Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса (Ливио) - страница 22
Если число можно выразить в виде отношения двух целых чисел (например, 3/17, 2/5, 1/10, 6/1), его называют рациональным числом (собственно, латинское слово ratio и означает «отношение»). Пифагорейцы доказали, что √2 – не рациональное число. Более того, вскоре после этого открытия обнаружилось, что и √3, √17 и вообще квадратный корень любого числа, которое не представляет собой точный квадрат (16, 25 и т. д.), – тоже не рациональные числа. Последствия были самые серьезные: пифагорейцы доказали, что к бесконечному множеству рациональных чисел придется добавить бесконечное множество чисел другой разновидности – сегодня мы называем их иррациональными числами. Важность этого открытия для дальнейшего развития математического анализа невозможно переоценить. Помимо всего прочего, оно привело и к тому, что в XIX веке признали существование счетных и несчетных бесконечностей[14]. Однако на самих пифагорейцев это открытие произвело настолько ошеломляющее впечатление, что философ Ямвлих пишет, что тот, кто открыл иррациональные числа, «вызвал, как говорят, такую ненависть, что его не только изгнали из общины и отлучили от пифагорейского образа жизни, но и соорудили ему надгробие, как будто действительно ушел из жизни тот, кто некогда был их товарищем».
Однако пифагорейцам принадлежит заслуга, вероятно, даже более важная, чем открытие иррациональных чисел, – то, что именно они первыми стали настаивать на математическом доказательстве, процедуре, основанной исключительно на логических рассуждениях, при помощи которой можно было раз и навсегда установить истинность любого математического предположения, исходя из некоторых постулатов. До древних греков даже сами математики не считали, что кому-то хоть сколько-нибудь любопытно, какие умственные упражнения привели их к тому или иному открытию. Если какой-то математический рецепт можно было с успехом применять на практике, скажем, чтобы распределять участки земли, иного доказательства не требовалось. А вот греки захотели объяснить, почему его можно с успехом применять на практике. Хотя саму идею доказательства первым предложил философ Фалес Милетский (ок. 625–547 гг. до н. э.), именно пифагорейцы превратили эту привычку в совершенный инструмент, позволявший удостовериться в истинности математических утверждений. Значение этого прорыва в логике колоссально. Когда математика стала прибегать к доказательствам, основанным на постулатах, сразу же оказалось, что она покоится на куда более прочном фундаменте, чем любая другая научная дисциплина, которую обсуждали философы того времени. Как только удавалось представить строгое доказательство, основанное на последовательности умозаключений, где не было никаких логических оплошностей, истинность соответствующего математического утверждения становилась незыблемой навечно. Особый статус математического доказательства признавал даже Артур Конан Дойл, создатель самого знаменитого сыщика в мире. В «Этюде в багровых тонах» Шерлок Холмс объявляет, что его выводы «безошибочны, словно теоремы Эвклида» (