Камень ломает ножницы. Как перехитрить кого угодно (Паундстоун) - страница 70

Одним из первых, кто поверил Нигрини, был Роберт Бертон, главный финансовый инспектор из прокуратуры Бруклина. В 1995 г. Бертон использовал программное обеспечение Нигрини для анализа чеков семи компаний, подозреваемых в связях с преступным миром. Бертон обнаружил свидетельства придуманных чисел и после дальнейшего расследования обвинил в мошенничестве бухгалтеров и сотрудников, выписывавших чеки. Действия инспектора удостоились хвалебной статьи в Wall Street Journal. Закон Бенфорда был назван «инструментом, достойным Шерлока Холмса». Приводились также слова Бертона: «В точку. Это мошенничество».

Статья в Wall Street Journal принесла славу закону Бенфорда, но в то же время породила миф, что он представляет собой нечто вроде волшебного детектора лжи. С тех пор метод Нигрини получил широкое распространение в правоохранительных и налоговых органах, а также в частном секторе. Сегодня повседневный анализ данных о потребителях позволяет без труда выделить для дальнейшего изучения подозрительные числа. Тем не менее, анализ цифр остается относительно новым методом, недостаточно проверенным. Очень важно понимать, чего можно, а чего нельзя добиться с его помощью.

«Я регулярно расстраиваюсь, читая о том, как люди неправильно используют закон Бенфорда», – признался мне Нигрини. Вне всякого сомнения, человек услышал о законе Бенфорда, просмотрел статью в «Википедии» и решил, что любые числа, первая цифра которых не соответствует кривой распределения, – фальшивые. Этот вывод ни в коем случае нельзя назвать верным. Существует множество причин, когда первые цифры легитимных чисел могут не подчиняться распределению Бенфорда, и поэтому проверка первой цифры редко бывает полезной. Нигрини считает, что гораздо эффективнее анализ первых двух. В результате получается гистограмма из 100 столбиков. При достаточном массиве информации (тысячи чисел) соответствующие распределению Бенфорда данные образуют на графике гладкую кривую.

Другой полезный тест анализирует две последние цифры больших чисел. Это даже не проверка «закона Бенфорда». Таким способом выявляются характерные особенности придуманных чисел, выявленные Чапанисом. Обратите внимание что тест последних двух цифр работает даже в том случае, когда данные не должны подчиняться закону Бенфорда.

В руках профессионала анализ цифр состоит из множества разных тестов, а также вычисления их статистической значимости. Первичным этапом сравнения должна быть история одного и того же набора данных. Расходы текущего квартала должны сравниваться с расходами предыдущих кварталов. Нигрини называет этот принцип «Мое правило» – по модели базовых имен, предложенных программным обеспечением для новых файлов («Мой файл», «Моя таблица» и так далее). «Мое правило» позволяет избежать самой распространенной ошибки дилетантской нумерологии, предполагающей, что все числовые базы данных в точности описываются законом Бедфорда. Это ошибочное допущение. Признаки придуманных чисел, выявленные Чапанисом, тоже не обеспечивают стопроцентной защиты. По необъяснимым причинам эти методы могут оказаться применимыми или не применимыми в каждой конкретной ситуации. Проще и надежнее использовать в качестве основы прошлые распределения цифр.