Газета Завтра 1200 (48 2016) (Газета «Завтра») - страница 39

Валентин ГИБАЛОВ. Мне кажется, хорошим ответом на это является начало всей термоядерной истории. В 1952-53 годах были взорваны первые термоядерные бомбы. И ровно с этого момента начинаются секретные программы разработки термоядерных реакторов, управляемого термоядерного синтеза — связь тут очень чётко прослеживается. Это решение приняли и в США, и в СССР сразу, как только пришло практическое подтверждение, что выход энергии есть, причём выход колоссальный и необъяснимый даже в случае использования реакции деления урана или плутония. Просто учёные тогда посчитали, что если взять весь уран, например, "Царь-бомбы" и поделить его, то его энергии не хватит на все те мегатонны, которыми она рванула на Новой Земле. И с тех пор получена масса подтверждений термоядерной реакции, можно, например, практически "в гараже" собрать такие полуигрушки-реакторы, называющиеся "фузоры"…

"ЗАВТРА". …и которые буквально "в холодную" делают синтез нескольких атомов в минуту?

Валентин ГИБАЛОВ. Да! Но они излучают нейтроны, причём объяснить появление этих нейтронов в фузорах как-то по-другому невозможно. Надо признать, что там идёт термоядерный синтез. Конечно, такой маленький реактор не будет выдавать электро­энергию, но лучить нейтронами во все стороны вполне будет. Так что лучше не спать с ним в обнимку — хотя топливом для фузора и будет обычный тяжёлый водород-дейтерий, в небольшом количестве содержащийся в простой водопроводной воде, которую заливают в фузор.

"ЗАВТРА". А вот если сейчас сказать о термоядерном топливе для наших читателей… В фильме "Луна-2112" главный герой добывает гелий-3 на поверхности Луны. А что является основным термоядерным топливом на Земле?

Валентин ГИБАЛОВ. Сейчас для термоядерного синтеза рассматриваются всего три реакции. Причём из них более-менее реалистична одна-единственная — дейтерий-тритиевая энергетика. Она самая простая и даёт больше всего энергии на выходе. Но есть у неё и инженерные недостатки, довольно серьёзные, которые очень усложняют жизнь.

"ЗАВТРА". Например, нейтроны.

Валентин ГИБАЛОВ. Да, нейтроны. Которые активируют реактор и всё вокруг: термоядерный реактор становится сам очень высокорадиоактивным. Например, получается, что "время жизни" первой стенки реактора на дейтерий-тритии — всего пять лет, то есть каждые пять лет надо менять один из самых сложных компонентов реактора. И, конечно, это экономически очень затратно. Собственно, поэтому мы имеем в мире лишь один-единственный научный проект термоядерного реактора — ITER (ИТЭР).

Кроме дейтерия-трития есть реакция дейтерий-дейтерий ("монотопливо") — она получается совсем неудобной по физике, потому что у неё тоже на выходе много нейтронов, и при этом она гораздо тяжелее в достижении нужных параметров реактора, в первую очередь — температуры плазмы. И есть лунный гелий-3, которого практически нет на Земле, но которого много в грунте Луны. Но у этой реакции ещё больше требования, безумная проблема в плане того, как сделать реактор, который бы удерживал плазму из дейтерия и гелия-3.