Когда некоторые элементы множества обладают определенным свойством, а другие нет, такое множество представляет собой совокупность элементов с указанным свойством. Давайте сформулируем это немного проще: существует множество поросят, и среди них есть желтые поросята, которые образуют множество желтых поросят. Здесь трудно с чем-то не согласиться. Однако эти определения носят весьма обобщенный характер. В качестве множества может выступать совокупность поросят, действительных чисел, идей, возможных вселенных или других множеств. И именно последний случай создает множество проблем. Существует ли множество множеств? Безусловно. А множество всех бесконечных множеств? Почему бы нет? На самом деле оба эти множества обладают любопытным свойством: они являются элементами самих себя. В частности, множество бесконечных множеств – это, разумеется, само по себе бесконечное множество, элементы которого содержат множества такого типа:
{целые числа}
{целые числа, а также поросенок}
{целые числа, а также Эйфелева башня}
и так далее, и тому подобное. Очевидно, что этому нет конца.
Мы могли бы назвать такое множество уроборическим, по имени мифического змея, который кусает себя за хвост и пожирает сам себя. Следовательно, множество бесконечных множеств является уроборическим, но множество {1, 2, поросенок} нет, поскольку ни один из его элементов не является множеством {1, 2, поросенок}: все его элементы – это либо числа, либо животные, но не множества.
Теперь наступает кульминационный момент. Путь NO – это множество всех неуроборических множеств. NO – достаточно странная концепция, чтобы представить ее себе, но, если определение Фреге допускает это в мире множеств, мы тоже должны сделать это.
Является ли NO уроборическим множеством или нет? Другими словами, является ли NO элементом NO? Согласно определению, если NO – это уроборическое множество, тогда NO не может входить в состав NO, которое состоит только из неуроборических множеств. Но утверждать, что NO не является элементом NO, – это равносильно утверждению о том, что NO – это неуроборическое множество, то есть оно не содержит себя.
Но подождите-ка: если NO – это неуроборическое множество, тогда это элемент множества NO, которое является множеством всех неуроборических множеств. Выходит, что NO – это все же элемент NO, то есть NO – уроборическое множество.
Если NO – уроборическое множество, оно таковым не является, а если это не уроборическое множество, то оно является таковым.
Примерно таким было содержание письма, которое молодой Бертран Рассел написал Фреге в июне 1902 года. Рассел познакомился с Пеано в Париже на Международном конгрессе. Неизвестно, присутствовал ли он на докладе Гильберта, но он безусловно был сторонником программы сведения всей математики к чистой последовательности выводов из базовых аксиом