Как не ошибаться. Сила математического мышления (Элленберг) - страница 312

. Письмо Рассела начинается как письмо молодого почитателя к старшему логику: «Я согласен с вами по всем основным моментам, особенно с вашим неприятием психологического элемента в логике и с тем значением, которое вы придаете концептуальному обозначению основ математики и формальной логике, которую, кстати говоря, трудно распознать».

Но затем Рассел пишет следующее: «У меня возникла трудность только с одним вопросом».

Далее он объясняет в письме, в чем состоит проблема с множеством NO, которая известна теперь как парадокс Рассела[316].

В конце письма Рассел выражает свое сожаление по поводу того, что Фреге еще не опубликовал второй том своего труда «Grundgesetze der Arithmetik» («Основные законы арифметики»). На самом деле эта книга была завершена и уже находилась в печати, когда Фреге получил письмо Рассела. Несмотря на уважительный тон («У меня возникла трудность» вместо «Я только что испортил труд всей вашей жизни»), Фреге сразу же понял, что означает парадокс Рассела для его версии теории множеств. Менять что-то в книге было слишком поздно, но Фреге поспешно добавил эпилог с объяснением губительного озарения Рассела. Пожалуй, это объяснение Фреге можно считать самым грустным предложением о математике из всех, которые когда-либо были написаны: «Einem wissenschaftlichen Schriftsteller kann kaum etwas Unerwünschteres begegnen, als dass ihm nach Vollendung einer Arbeit eine der Grundlagen seines Baues erschüttert wird». Что означает: «Вряд ли ученый может столкнуться с чем-либо более нежелательным, чем разрушение самой основы только что законченной работы».

Гильберт и другие формалисты не хотели оставлять открытой возможность противоречия, встроенного в аксиомы подобно часовой бомбе; он стремился разработать математическую систему, в которой непротиворечивость была бы гарантирована. Нельзя сказать, что Гильберт на самом деле считал, будто в арифметике может быть скрыто противоречие. Подобно большинству математиков и даже большинству обычных людей, он был убежден, что стандартные правила арифметики – это истинные утверждения о целых числах, а значит, они не могут противоречить друг другу. Однако этого было недостаточно, поскольку в основе такого подхода лежало предположение о том, что множество целых чисел действительно существует. Для многих это было камнем преткновения. За несколько десятилетий до этого Георг Кантор впервые поставил концепцию бесконечности на твердую математическую основу. Однако его работа не получила широкого принятия и распространения; кроме того, была довольно большая группа математиков, которые считали, что любое доказательство, основанное на существовании бесконечных множеств, должно считаться сомнительным. Все готовы были принять тот факт, что существует число 7. Однако существование множества