Как не ошибаться. Сила математического мышления (Элленберг) - страница 316

Именно так протекает процесс математического творчества. Вот как вспоминает французский математик Анри Пуанкаре о большом геометрическом открытии, которое он сделал в 1881 году[319]:

…по прибытии в Кутанс мы взяли омнибус для прогулки; и вот в тот момент, когда я заносил ногу на ступеньку омнибуса, мне пришла в голову идея – хотя мои предыдущие мысли не имели с нею ничего общего, – что те преобразования, которыми я воспользовался для определения фуксовых функций, тождественны преобразованиям неевклидовой геометрии. Я не проверил этой идеи; для этого я не имел времени, так как, едва усевшись в омнибус, я возобновил начатый разговор, тем не менее я сразу почувствовал полную уверенность в правильности идеи. Возвратясь в Кан, я проверил; идея оказалась правильной[320].

Однако Пуанкаре подчеркивает, что на самом деле это произошло не на ступеньке омнибуса. Тот момент вдохновения был результатом многих недель труда, как осознанного, так и подсознательного, который каким-то образом готовит разум к установлению необходимых связей между различными идеями. Сидеть и ждать вдохновения – это путь к неудаче, каким бы талантливым молодым человеком вы ни были.

Возможно, мне трудно обосновать эту точку зрения, поскольку я сам был одним из одаренных детей. Я знал, что стану математиком, с тех пор как мне исполнилось шесть лет. Я изучал курсы, выходящие далеко за рамки моего этапа обучения, и выиграл множество медалей на математических соревнованиях. А после поступления в университет я был совершенно уверен в том, что участники математической олимпиады станут величайшими математиками моего поколения. Однако на самом деле все сложилось не совсем так. Из этой группы молодых звезд вышло много превосходных математиков, таких как Терри Тао – специалист по гармоническому анализу, получивший медаль Филдса. Однако большинство математиков, с которыми я сейчас работаю, не были членами математических кружков в тринадцатилетнем возрасте; их способности и таланты сформировались в разные периоды жизни. Так стоит ли бросать занятия математикой в средней школе?

Когда довольно много времени работаешь в математике (а я считаю, что этот урок применим и в других областях), то начинаешь понимать, что всегда есть тот, кто в чем-то тебя превосходит. Люди просто начинают смотреть на того, кто доказал хорошие теоремы; тот, кто доказал хорошие теоремы, смотрит на того, кто доказал много хороших теорем; тот, кто доказал много хороших теорем, смотрит на того, кто получил Филдсовскую премию; обладатели медали Филдса следят за теми, кто входит во «внутренний круг» медалистов, а члены этого круга всегда могут обратить свой взор на тех, кого уже с нами нет. Никто никогда не смотрит в зеркало и не говорит: «Надо признать, я лучше Гаусса». Тем не менее за последнюю сотню лет эти «болваны по сравнению с Гауссом» совместными усилиями обеспечили величайший расцвет математического знания, который когда-либо видел мир.