Однако Рамануджан был особым человеком, историю которого рассказывают так часто именно в силу ее нетипичности. Гильберт начинал как очень хороший, но не исключительный студент, который ни в коей мере не был самым блестящим молодым математиком в Кёнигсберге; таковым был Герман Минковский – на два года моложе Гильберта[318]{284}. Впоследствии Минковский сделал весьма серьезную математическую карьеру, но так и не достиг высот Гильберта.
Один из самых мучительных аспектов преподавания математики – видеть, как культ гениальности причиняет вред студентам. Культ гениальности внушает студентам мысль о том, что заниматься математикой не стоит, если ты не самый лучший в области математики, поскольку только вклад избранных гениев имеет значение. Но ведь мы не обращаемся так ни с одной другой дисциплиной! Я никогда не слышал, чтобы студенты говорили: «Мне нравится “Гамлет”, но мне не место на курсе углубленного изучения английского; я не тот парень, который сидит в первом ряду, знает все пьесы и начал читать Шекспира в девятилетнем возрасте!» Спортсмены не бросают занятия спортом только потому, что один из членов команды показывает более высокие результаты. Тем не менее я вижу, как многообещающие молодые математики каждый год уходят, несмотря на то что любят математику, потому что кто-то в их поле зрения в чем-то их «превосходит».
Так мы теряем многих студентов, выбравших математику в качестве профилирующей дисциплины, а значит, мы теряем много будущих математиков. Однако это еще не вся проблема. Думаю, нам нужно больше изучающих математику студентов, которые не станут математиками. Нам нужно больше врачей, учителей средней школы, генеральных директоров и сенаторов, хорошо знающих математику. Однако мы не получим всего этого до тех пор, пока не отбросим стереотип, который гласит, что математикой стоит заниматься только молодым гениям.
Кроме того, культ гениальности приводит к недооценке тяжелого труда. Когда я начинал свою карьеру, я считал, что слово «трудолюбивый» – это своего рода завуалированное оскорбление и что так говорят о студенте, которого трудно назвать умным. Однако способность усердно трудиться (сфокусировать все свое внимание и энергию на той или иной задаче, целенаправленно размышляя над ней снова и снова и анализируя все, что напоминает решение, несмотря на отсутствие внешних признаков прогресса) – такое качество свойственно далеко не всем. Без такого качества, которое психологи называют в наши дни упорством{285}, невозможно заниматься математикой. Без него легко потерять из виду важность работы, поскольку математическое вдохновение, когда оно наконец все же приходит, может показаться бессильным и преходящим. Я хорошо помню, как доказал свою первую теорему. Во время учебы в университете я работал над первой дипломной работой и совершенно зашел в тупик. Однажды вечером я был на заседании редколлегии университетского литературного журнала, пил красное вино и время от времени принимал участие в обсуждении какого-то скучного рассказа, как вдруг у меня в голове все перевернулось, и я понял, как преодолеть барьер. Не было никаких деталей, но это и не имело значения: в глубине души я не сомневался, что задача решена.