Вычисления в обратном порядке, или почему алгебра столь трудна для понимания
В процессе обучения есть два опасных поворота, из-за которых у многих детей возникают трудности с изучением математики. Первый наступает в начальной школе, когда вводится понятие дроби. До этого момента любое число было натуральным, одним из ряда 0, 1, 2, 3… Такие числа представляют собой ответ на вопрос «сколько?»[100]. То есть пока мы имели дело с весьма простым понятием, настолько примитивным, что, если довериться слухам, его постигают даже многие животные{80}. Переход от этого понятия к гораздо более широкой концепции, где число может означать «какая часть», – слишком серьезный шаг, который можно приравнять к мировоззренческому сдвигу. («Бог создал натуральные числа. Все остальное – творение человека», – сказал Леопольд Кронекер, алгебраист XIX столетия.)
Второй опасный поворот – алгебра. Почему она так трудна для понимания? Потому что до появления алгебры все числовые вычисления выполняются сугубо алгоритмически. Вы вводите определенные числа в некое устройство для выполнения операции сложения, умножения или (в школах с традиционным подходом к обучению) даже деления столбиком – и, повернув рычаг, получаете на выходе результат.
Алгебра представляет собой нечто иное. Это вычисления в обратном порядке. Предположим, вам нужно решить такой пример:
x + 8 = 15
Вы знаете, что получено на выходе данного устройства для операции сложения (а именно 15); вам необходимо методом обратных вычислений определить, что было введено в это устройство вместе с числом 8.
В данном случае, как вам наверняка объяснил учитель математики в седьмом классе, можно выполнить перенос из одной части уравнения в другую, чтобы известные числа оказались с одной стороны:
x = 15 – 8
После этого можно просто ввести числа 15 и 8 в устройство для выполнения операции вычитания (позаботившись при этом, чтобы числа вводились в правильном порядке), определив таким способом, что x должен быть равен 7.
Однако не всегда все так просто. Возможно, вам понадобится решить квадратное уравнение такого типа:
x² – x = 1.
Я уже слышу ваши протесты! Да что вы говорите? Серьезно?
Действительно, с какой стати вам вообще делать это, если только вы не получили от учителя такого задания?
Помните ту ракету из второй главы? Ведь она и поныне все еще бешено мчится к вам.
Возможно, вы уже знаете: эта ракета запущена с высоты 100 метров над поверхностью земли и движется вверх со скоростью 200 метров в секунду. Если не было бы силы тяжести, она продолжала бы лететь вверх по прямой в соответствии с законами Ньютона, каждую секунду поднимаясь на очередных 200 метров. Через