можно ввести в решающее устройство, повернуть рычаг и получить ответ 12. Но вы не учили в школе формулу корней кубического уравнения, поскольку это достаточно сложное уравнение, составленное только в конце эпохи Возрождения, когда странствующие алгебраисты скитались по всей Италии, втягивая друг друга в ожесточенные математические баталии, в которых ставкой выступало решение уравнений, а на кону стояли деньги и статус. Немногие математики, знавшие формулу корней кубического уравнения, держали ее в секрете и записывали только в виде зашифрованных стихов
{81}.
Но это длинная история. Суть в том, что метод обратных вычислений довольно сложен.
Трудность задачи логического вывода (той самой задачи, над решением которой работали исследователи, искавшие в библейские скрытые коды) обусловлена тем, что это именно такая задача. Будь мы ученые, или исследователи Торы, или малыши, изумленно взирающие на тучи, – в любом случае мы имеем дело лишь с наблюдениями. На их основе мы строим гипотезы: из какого исходного материала создан мир, который мы видим? Логический вывод таков: мы столкнулись с трудной задачей, возможно, самой трудной из всех задач. Отталкиваясь от формы туч и их движения, мы проходим обратный путь, чтобы найти х – систему, которая их создала.
Опровержение нулевой гипотезы
Все это время мы пытаемся найти ответ на фундаментальный вопрос: в какой степени мне следует удивляться тому, что я вижу в этом мире? Моя книга посвящена математике, а значит, вы догадываетесь, что существует численный способ ответить на этот вопрос. Такой способ действительно существует, но он таит в себе опасность. Пришло время поговорить о p-значениях.
Однако сначала нам нужно обсудить тему маловероятности, в отношении которой наши представления были до сих пор неприемлемо расплывчатыми. У этого есть своя причина. Существуют области математики (такие как геометрия и арифметика), которым мы учим детей и которым дети в какой-то мере учатся сами. Эти области математики наиболее отвечают нашей врожденной интуиции. Мы рождаемся, почти зная о том, как считать и разделять объекты на категории по таким признакам, как место и форма. Формальное математические толкование подобных концепций не так сильно отличается от того, с чего мы начинаем.
Совсем другое дело – вероятность. Безусловно, мы размышляем о неопределенных вещах, опираясь на внутреннее интуитивное восприятие, но сформулировать все это гораздо труднее. Есть причина, почему математическая теория вероятностей возникла на столь позднем этапе истории математики и почему она так поздно появляется в учебном плане по математике. Если вы попытаетесь задуматься, что