Кому нужна математика? Понятная книга о том, как устроен цифровой мир (Литвак, Райгородский) - страница 35

Результат Эрдеша – Реньи: критическая вероятность помех. Если вероятность помех меньше критической, связность сети сохраняется, а если больше – разрушается


Подобные фазовые переходы типичны для теории случайных графов. Эти результаты самые интересные, потому что многое говорят о природе сетей на практике. Состояние сети – это, как правило, две крайности. Социальная сеть либо становится популярной, либо умирает. Компьютерный вирус распространяется с огромной скоростью и размахом или сходит на нет в самом начале. И реальность, и математика подтверждают: среднего не дано. К сожалению, нам далеко не всегда известны критические значения и главное мы не знаем каким образом удержаться по правильную сторону от фазового перехода.

Как доказывается результат Эрдеша – Реньи

Глубокие математические доказательства часто строятся на очень простых интуитивных идеях. Результат Эрдеша – Реньи – блестящий пример данной закономерности[11].

Математики заметили, что наиболее вероятный способ разрушить связность сети – отрезать один узел от всех каналов связи. Группу узлов отрезать гораздо труднее, потому что число каналов, которые связывают ее и остальную часть сети, относительно большое. Маловероятно, что все эти каналы недоступны. Тогда изначально сложный вопрос:

С какой вероятностью разрушится связность сети?

сводится к гораздо более простому вопросу:

С какой вероятностью хотя бы один из узлов потеряет все свои каналы связи?

Чтобы доказать, что эти вероятности приблизительно равны, понадобятся длинные и нетривиальные математические выкладки. Но доказать это можно, и усилия оправдываются, потому что второй вопрос гораздо проще первого.

Например, если у нас 100 узлов и вероятность помехи 0,96, то каждый узел может оказаться оторванным от всех 99 других узлов с вероятностью


(0,96)>99 (×100 %)


Это очень специфическое выражение: число, близкое к единице, возведенное в большую степень. Такие выражения хорошо известны в математике и относятся к так называемым замечательным пределам, из которых, по сути дела, и следует результат.

Что мы знаем и чего не знаем о надежности интернета

Результаты Эрдеша – Реньи полностью не решают проблемы устойчивости интернета. Их модель не очень похожа на реальный интернет. Например, в модели Эрдеша – Реньи число линий у разных узлов обычно близко к среднему. В интернете же разброс между серверами очень большой. У одних серверов сотни каналов связи, а у других – всего два-три.

В 2000 году журнал Nature опубликовал статью «Устойчивость к помехам и атакам в больших сетях»