Кому нужна математика? Понятная книга о том, как устроен цифровой мир (Литвак, Райгородский) - страница 34


Для многих приложений важно умение работать с сетями, в которых изначально присутствуют не все возможные связи. Например, таковы сети автомобильных дорог, социальные сети и тот же интернет.

Надежность сети, по сути, и есть та вероятность уничтожения отдельной связи в ней, начиная с которой общая связность маловероятна. Для описанной выше ситуации надежность исключительно высока, и это строго доказанный результат.

Фазовый переход

На самом деле теорема Эрдеша – Реньи несколько точнее и еще удивительнее, чем мы описали в предыдущем разделе. Эта теорема выявила интересное явление, которое физики называют фазовым переходом. Фазовый переход – это резкий скачок от одного состояния системы к совершенно другому[10].

Самый знаменитый фазовый переход – изменение состояния воды в зависимости от температуры. При 0° Цельсия вода превращается в лед, а при 100° – в пар. 0° и 100° – критические значения, при которых состояние резко меняется.

Нечто похожее происходит и с вероятностью связности сети, если изменять вероятность недоступности каналов. Оказывается, надежность сети меняется не постепенно, а очень резко. Если вероятность помехи меньше критического значения, то с подавляющей вероятностью связность сохраняется. Но стоит хотя бы немного пересечь критическую черту – и сеть почти наверняка распадется.

На рис. 4.7 показан пример сети из 100 компьютеров. Согласно результатам Эрдеша – Реньи, критическая вероятность помех в такой сети равна 95,4 %. Слева вероятность помехи 95 %, то есть меньше критического значения. Как видите, связность сети сохранилась. Мы неоднократно повторили эксперимент, но получить несвязную сеть нам так и не удалось. На рисунке справа вероятность помехи 96 %. И что же? Одна точка оторвалась от сети, связность потеряна. Опять же как мы ни старались повторить эксперимент, связной сети мы не получили ни разу. Результат впечатляет тем, насколько тонкой оказывается грань между связностью и несвязностью!


Рис. 4.7. Сеть из 100 компьютеров в виде графа. Слева: вероятность недоступности канала 95 %; связность сохраняется. Справа: вероятность недоступности канала 96 %; связность нарушена


Если вероятность помех в точности равна критической, то произойдет примерно то же самое, что и с водой и снегом при нуле градусов: может получиться и так и эдак. В нашем случае вероятность сохранения связности приблизительно составит 36,79 %.

Критическая вероятность недоступности канала для сети размера п вычисляется по формуле



Для примера мы приводим несколько значений в табл. 4.3.


Таблица 4.3.