В поисках кота Шредингера. Квантовая физика и реальность (Гриббин) - страница 31

В последующие годы Эйнштейн продолжил интегрировать идеи Планка о кванте в другие области физики. Он обнаружил, что они объясняли давние загадки теории удельной теплоемкости (удельная теплоемкость вещества – это количество теплоты, которое необходимо сообщить телу, чтобы поднять его температуру на данную величину; она зависит от того, каким образом атомы колеблются внутри вещества, и эти колебания, как выяснилось, необходимо проквантовать). Эта физическая идея не столь привлекательна, и на нее часто не обращают внимания при изучении работ Эйнштейна, но квантовая теория вещества была принята быстрее, чем разработанная Эйнштейном квантовая теория излучения. Так многие физики старой школы начали убеждаться, что квантовые идеи стоит воспринимать всерьез. Эйнштейн долгие годы, вплоть до 1911-го, работал над улучшением своей концепции квантового излучения и доказал, что квантовая структура света является неизбежным следствием уравнения Планка, а также продемонстрировал невосприимчивому научному миру, что лучше понять природу света можно, связав волновую и корпускулярную теории, которые соперничали друг с другом с XVII века. К 1911 году его внимание переключилось на другие вещи. Он убедил самого себя в реальности квантов, а значение имело лишь его собственное мнение. Теперь его интересовала гравитация, и за пять лет – до 1916 года – он разработал общую теорию относительности, величайшую из его работ. Реальность квантовой природы света была окончательно подтверждена только в 1923 году, и это, в свою очередь, привело к новому спору о частицах и волнах, который помог трансформировать квантовую теорию и подтолкнуть появление ее современной версии, квантовой механики. Подробнее об этих идеях будет рассказано далее. Первый расцвет квантовой теории пришелся на десятилетие, в ходе которого Эйнштейн отдалился от этой области науки и сконцентрировался на других проблемах. Этот расцвет был связан с переплетением идей Эйнштейна с моделью атома Резерфорда и во многом произошел благодаря трудам датского ученого Нильса Бора, который работал вместе с Резерфордом в Манчестере. Когда Бор предложил свою модель атома, уже никто не смог усомниться в значении квантовой теории для описания физического мира мельчайших частиц.

Глава четвертая

Атом бора

К 1912 году кусочки атомной мозаики начали складываться воедино. Эйнштейн дал широкое обоснование идее кванта и ввел представление о фотонах, хотя оно пока не получило всеобщего признания. Продолжая аналогию с банкоматом, можно сказать, что Эйнштейн полагал, будто энергия распространяется лишь кусками определенного размера – банкомат дает только суммы, кратные десяти фунтам, потому что это самая мелкая купюра, с которой он работает, а не из того, что так захотел программист, настроивший его. Резерфорд предложил новую картину атома, с маленьким ядром в центре и облаком электронов вокруг, хотя эта идея тоже не получила всеобщей поддержки. Впрочем, атом Резерфорда не мог быть стабилен согласно классическим законам электродинамики. Решение крылось в том, чтобы использовать квантовые законы для описания поведения электронов внутри атомов. И опять прорыв совершил молодой исследователь со свежим взглядом на проблемы – квантовая теория развивалась именно так.