Сейчас. Физика времени (Мюллер) - страница 135

Все теоретические рассуждения вокруг этих тем вполне могут оказаться всего лишь причудливыми фантазиями. В прошлом физика развивалась совершенно иначе. Помимо традиционных четырех взаимодействий (электромагнитное, ядерное [известное как сильное взаимодействие], сила радиоактивности [известная как слабое взаимодействие] и гравитация) может существовать сколько угодно дополнительных сил, и не исключено, что сначала их придется открыть, чтобы потом иметь возможность включить их в правильную теорию.

Эйнштейн, разрабатывая единую теорию поля, угодил в ловушку: попытался объединить не те силы. Нынешние великолепные единые теории, возможно, делают ту же ошибку.

Некоторые теоретики возражают, что других сил не существует; не исключено, что они правы, но мне их рассуждения не кажутся убедительными. Гравитация – чрезвычайно слабая сила, и мы бы никогда ее не заметили, если бы не две причины: во-первых, у нее заряд только одного знака (всякая масса положительна), так что она никогда сама себя не компенсирует; во-вторых, у нее очень большая дальность действия, и потому она может ощущаться на очень больших расстояниях, поскольку сила, исходящая от множества частиц, суммируется. Любая другая столь же слабая сила с зарядами разных знаков, которые компенсируют друг друга (как обстоит дело в электромагнетизме с протонами и электронами) или с малой дальностью действия, до сих пор оставалась бы неоткрытой.

В окружающем нас мире, который мы воспринимаем органами чувств, неопределенность квантовой физики усиливается из-за явления, известного как хаос.

Неопределенность хаоса

Приведенная ниже песенка в различных вариантах известна по крайней мере с 1390 г.

Не было гвоздя – подкова пропала,
Не было подковы – лошадь захромала,
Лошадь захромала – командир убит,
Конница разбита, армия бежит.
Враг вступает в город, пленных не щадя,
Потому что в кузнице не было гвоздя[195].

Эти слова иллюстрируют глубинную суть современной теории хаоса – то, что крохотные причины во временем могут вылиться в громадный эффект. В «Парке Юрского периода»[196] напыщенный математик Ян Малкольм так описывает классический пример эффекта бабочки: если какая-то бабочка взмахнет крыльями, в Центральном парке Нью-Йорка неделей позже вместо ясной погоды пойдет дождь. В бытовом употреблении термин «эффект бабочки» возник раньше, чем появилась теория хаоса; он восходит по крайней мере к 1941 году, когда Джордж Стюарт описал его в романе-бестселлере Storm («Шторм»).

Хаос наблюдается в движении планет, в закономерностях и аномалиях погоды, в динамике демографических процессов. Математическая теория хаоса показывает, что последствия небольших изменений могут экспоненциально возрастать со временем, по крайней мере на начальном этапе. Таким образом, оказывается, что для предсказания будущего необходима бесконечная точность. В результате хотя мы можем, как правило, предсказать погоду на несколько часов, а иногда и на несколько суток вперед, мы очень плохо угадываем ее на неделю или на месяц вперед.