).
Электрическое и магнитное поля тоже объединены в теории относительности, но более сложным способом. Вместо трехмерного вектора электрического поля (E>x, E>y, E>z) и трехмерного вектора магнитного поля, обычно записываемого (B>x, B>y, B>z), в теории относительности они становятся компонентами четырехмерного тензора F (от field – поле), который записывается так:
Матрица кажется сложной, и каждый компонент в ней повторяется дважды, но у нее есть преимущество: чтобы получить новый тензор F в другой системе отсчета, мы пользуемся теми же релятивистскими уравнениями, которые применяли при поиске пространственных координат и времени. Кроме того, вместо включения в наши уравнения отдельно электрического и магнитного полей просто включаем туда F. Уравнения при этом выглядят проще. Это позволило объединить электрическое и магнитное поля – то есть сделать их как бы частями одного более крупного объекта, тензора поля, а не двух отдельных сущностей.
Приложение 3
Доказательство иррациональности √2
Если предположить, что число √2 рационально, это будет означать, что это число можно записать в виде I/J, где I и J – целые числа. А теперь, если удастся свести это утверждение к противоречию, мы докажем, что наше первоначальное предположение ложно.
Если I и J четные, можем упростить дробь на общий делитель 2 и повторить это действие столько раз, сколько понадобится, чтобы хотя бы одно из этих чисел стало нечетным. Это значит, что если √2 = I/J, то можно записать также √2 = M/N, где по крайней мере одно из чисел M и N или оба нечетные.
M/N = √2. Возведем это уравнение в квадрат и умножим на N, получим M² = 2N². Поскольку M² получается умножением на два, это число четное. Значит, M тоже четное, поскольку квадрат нечетного числа всегда нечетный. А теперь я покажу, что N тоже четное.
Поскольку M четное, мы можем записать его как M = 2K, где K – еще одно целое число. Возведя это уравнение в квадрат, получим M² = 4K². Чуть ранее мы показали, что M² = 2N², поэтому 2N² = 4K². Разделив на 2, получим N² = 2K². Следовательно, число N² четное, а значит, и N – тоже четное.
Мы получили противоречие с нашим выводом, что хотя бы одно из чисел M и N должно быть нечетным. Единственной возможной причиной (поскольку в остальном мы строго следовали правилам математики) оказывается то, что наше первоначальное предположение – о том, что √2 можно записать как I/J, – неверно. Таким образом, иррациональность √2 доказана.
Этот результат так интересен, в частности, потому, что его никак невозможно получить в рамках физики. Никакое измерение не в состоянии продемонстрировать, что число √2 иррационально. Это истина, лежащая за пределами физических измерений; она существует только в человеческом сознании. Это нефизическое знание.