Сейчас. Физика времени (Мюллер) - страница 213

Той же процедурой можно воспользоваться в теории относительности и квантовой физике, а также в их комбинации, известной как релятивистская квантовая механика. Комбинация, которая не меняется со временем, здесь выглядит немного иначе, но мы все равно называем ее импульсом. Она содержит релятивистские члены – а также электрическое и магнитное поля и квантовые эффекты, – но по традиции мы продолжаем называть ее импульсом.

Тесная связь между временем и энергией переносится и в квантовую физику с ее принципом неопределенности. Согласно квантовой физике, энергия и импульс части системы обычно неопределенные, хотя мы и можем их определить. Вероятно, нет возможности точно измерить энергию конкретного электрона или протона, но принцип не предусматривает аналогичной неопределенности для полной энергии системы. В большом наборе частиц энергия может перемещаться между различными частями системы, но полная ее энергия фиксирована; она сохраняется.

В квантовой физике поведение волновой функции во времени имеет слагаемое e>iEt, где I = √−1, E – энергия, t – время. Когда Дирак решил свое уравнение для электрона, обнаружил, что в нем содержатся отрицательные энергии; именно это вынудило его предположить, что Вселенная представляет собой бесконечное море электронов с отрицательной энергией. Фейнман нашел этому другую интерпретацию. Он предположил, что отрицательной величиной оказывается не энергия E, а время t, тоже присутствующее в качестве сомножителя. Вместо отрицательной энергии у него появились электроны, движущиеся назад во времени, и Фейнман опознал в них позитроны.

В теории относительности физики видят пространство и время тесно переплетенными, а их комбинация носит название пространство-время. Инвариантность физики во времени ведет к сохранению энергии системы. Инвариантность в пространстве ведет к сохранению импульса. Если совместить то и другое, то инвариантность физики в пространстве-времени ведет к сохранению величины, известной как энергия-импульс. Ученые рассматривают энергию и импульс как два аспекта одного и того же. С этой точки зрения они скажут, что энергия – четвертый компонент четырехмерного вектора энергии-импульса. Если три компонента импульса обозначить как p>x, p>y и p>z, то вектор энергии-импульса будет выглядеть как (p>x, p>y, p>z, E). Разные физики расставляют эти четыре компонента в разном порядке. Некоторые считают энергию настолько важной, что ставят ее на первое место. Тогда они называют энергию нулевым, а не четвертым компонентом вектора: (E, p>x, p>y, p