Сейчас. Физика времени (Мюллер) - страница 45

[71] – это совсем не буйвол? Или что паук не насекомое? Или что Плутон не планета? Ученые пытаются «похитить» эти слова, а затем диктовать нам, когда можно ими пользоваться, а когда нет. Но не они их придумывали, поэтому и не имеют права изменять границы их значений. По моему мнению, американский буйвол только и есть, что американский буйвол. В XVII веке не только пауки, но и черви, и улитки назывались насекомыми. От одного математика я услышал, что на шнурках своих ботинок я завязываю не узел, так как все, что может быть развязано, не должно называться узлом.

Никто не давал ученым права изменять значение общепринятых слов. Одно из замечательных следствий этой логики – Плутон все-таки планета! Однажды я предложил студентам своего курса проголосовать за это, и с результатом 451:0 победили те, кто считает Плутон планетой. Поскольку участников того голосования было больше, чем на заседании Международного астрономического союза, (МАС)[72], вынесшем противоположное решение[73], думаю, что верх все же одержали мои студенты. Никто не давал МАС полномочий решать этот вопрос. (А я, между прочим, член МАС.) Плутон – по-прежнему планета. Конец моей тираде. Вернемся к мнимым числам.

В моей преподавательской практике я видел немало хороших и умных студентов, терпение которых лопалось, когда начиналось изучение мнимых чисел. Как можно работать с тем, чего нет? При встрече с мнимыми числами практически у всех возникает ощущение, что такая математика становится слишком абстрактной, чересчур оторванной от реальности, чтобы ее можно было понять.

В духе отрицания пресловутого «научного языка» я объявляю, что мнимые числа совсем не воображаемые. Квадратный корень из −1 (√−1) в действительности существует. Чтобы понять, каким образом, давайте посмотрим на другие абстрактные числа. Существует ли 0? Древние римляне говорили, что нет. Они полагали самоочевидным, что ничто не может существовать. Как итог – в римских цифрах нет нуля. Римлянин, записывающий вычитание IV из IV, в качестве результата просто оставлял пустое место. Но как пустое место в качестве результата отличить от нерешенной задачи? Идея использования символа, обозначающего ничто, была бы для римлян слишком большим шагом вперед, который они так и не сделали (если только вы не считаете Птолемея римлянином). Предполагаю, что в то время некоторые математики (или, может быть, счетоводы) настаивали на введении такого символа: просто он был бы полезен. Но концептуально римлянам трудно было принять обозначение символом того, что было