Алгоритмы для жизни: Простые способы принимать верные решения (Гриффитс, Кристиан) - страница 126

При распределении Эрланга события по определению никогда не удивят нас сильнее или слабее в зависимости от того, когда они произойдут. Любое явление всегда имеет равную вероятность завершиться вне зависимости от того, как долго оно существовало. Неудивительно, что политики всегда думают о своем следующем переизбрании.

Азартные игры характеризуются аналогичной сравнительно устойчивой вероятностью. Если бы ваше ожидание победы при игре на рулетке характеризовалось нормальным распределением, то сработало бы правило расчета средней вероятности: после неудачи правило подсказало бы вам, что ваше число выпадет в любую секунду и, возможно, за этим последует несколько еще более проигрышных вращений рулетки. (В этом случае было бы логично дождаться следующего выигрыша и закончить игру.) Если же ожидание победы происходит по экспоненциальному распределению, то правило умножения вероятностей сообщит вам, что выигрышные вращения рулетки последуют один за другим, но при этом, чем дольше продолжается «засуха», тем дольше она, вероятно, продлится. (В этом сценарии было бы верно продолжать игру некоторое время после выигрыша, но сразу же закончить ее после первого проигрыша.)

Перед лицом распределения без последействия, как бы то ни было, вы оказываетесь в тупике. Правило сложения подскажет вам, что ваш шанс на победу тот же, что и час назад, и тот же, что ожидает вас час спустя. Ничего не меняется. Вас не наградят за то, что вы выстояли и закончили на хорошей ноте; нет здесь и переломного момента, когда вам следует остановиться, чтобы обойтись малой кровью.

В своей песне «Игрок» Кенни Роджерс дал знаменитый совет, что вам необходимо «знать, когда уйти, знать, когда бежать», но для распределения без последействия не существует правильного времени, чтобы остановиться. Отчасти этим можно объяснить зависимость от азартных игр.

Понимание того, какое распределение имеет место в вашем случае, влияет на все.

Когда гарвардский биолог и активный популяризатор науки Стивен Джей Гулд узнал, что у него рак, его первым порывом было ознакомиться с соответствующей медицинской литературой. Затем он выяснил, почему врачи не советовали ему этого делать: половина всех пациентов с такой же разновидностью рака умерли в течение восьми месяцев после того, как узнали свой диагноз. Однако такая статистика не сказала ему ничего о распределении выживших пациентов. При нормальном распределении правило расчета средней вероятности могло бы сделать достаточно точный прогноз относительно того, как долго Гулд мог бы прожить: около восьми месяцев. Однако при экспоненциальном распределении ситуация была бы иная: правило умножения подсказало бы нам, что чем дольше он продолжал жить, тем больше доказательств того, что он проживет еще дольше. Читая дальше, Гулд узнал, что «кривая распределения была на самом деле очень асимметрична с правой стороны и ее длинный (хотя и тоненький) „хвост“ тянулся на несколько лет дальше медианы восемь месяцев». «Я подумал, – писал он, – что нет причин, по которым я не должен попасть в этот маленький хвостик, и вздохнул с огромным облегчением». Гулд прожил еще 20 лет после того, как впервые узнал о своем заболевании.