«Ошибка» (в процентах) характеризует небрежность при выполнении эксперимента или недостатки приборов, она свидетельствует о неопределенности в аппаратуре или в наших рассуждениях. Стремиться к чрезмерной точности при указании ошибок нет смысла. Это нелогично. Например, если разрубить обеденный стол на дрова, то вряд ли стоит потом зачищать куски дерева наждачной бумагой! Допустим, что, вычисляя ошибки, мы получили величину 0,4219365 %. Представлять ошибку таким числом — совершенно неразумно; так никогда не поступают. Если же указать, что ошибка равна 0,4 %, то это вполне имеет смысл, таким числом можно пользоваться.
Поэтому безразлично, на какое число мы будем делить при подсчете процентной ошибки: на один из результатов измерений, на их среднее или на какое-то близкое к ним округленное число. Выражая в процентах ошибку, т. е. недостаток точности, стараться вычислить ее как можно точнее — это просто тратить впустую время. В приведенном выше втором примере можно делить 0,002 на 2,130, или 2,132, или просто на 2. Ответы будут такие:
0,002/2,130 = 0,0939 %, 0,002/2,132 = 0,0938 %, 0,002/2 = 0,1000 %.
Все три результата дают при округлении одно и то же значение 0,1 %. Именно этим значением, легко вычисляемым в уме, и стал бы пользоваться любой физик.
Вычисления с ошибками
Предположим, что для вычисления какой-то величины требуется перемножить несколько результатов измерений. Для нахождения ошибки произведения нужно сложить все ошибки (или неопределенности) сомножителей. При этом ошибку произведения, как и ошибки сомножителей, выражают в процентах. Например, допустим, что при измерении площади прямоугольного участка землемер по небрежности находит завышенные значения длины и ширины. Предположим, что измеренная им длина завышена на 2 %, а ширина — на 3 %. Результат вычисления площади участка будет завышен на 2 + 3 %, т. е. на 5 %, а не на 2 x 3 %, что составляет 0,06 %. Предлагаем вам разобрать следующие задачи.
Задача 1. Ошибки в сомножителях
а) (Арифметическая задача.) Длина прямоугольного участка 400 м, а ширина 300 м. Измерения выполнены неточно, они дали значения 408 м на 309 м.
Вычислите истинную площадь поля.
Вычислите площадь поля по результатам измерений.
Выразите ошибку, допущенную при измерении длины участка, в процентах от длины. Найдите также ошибку в процентах, допущенную при измерении ширины.
Выразите ошибку в определении площади участка в процентах от площади.
Чтобы найти площадь участка, мы умножаем его длину на ширину. Какое правило нужно применить для определения ошибки, допущенной при вычислении площади в приведенном примере? Как мы должны поступить: перемножить ошибки, допущенные при измерении длины и ширины участка, или сложить эти ошибки?