Физика для любознательных. Том 1. Материя. Движение. Сила (Роджерс) - страница 271

б) (Более формальный подход.) Рассмотрите задачу следующим образом:

Результат определения длины

408 м или (400) + (2 % от 400).

Мы можем записать это в виде

400 + (>2/>100)∙400

и представить произведением 400∙(1 + >2/>100)

Точно так же запишите ширину участка. Вычислите площадь участка по полученным результатам измерений, перемножив длину и ширину, записанное в виде произведений:

(400∙(1 + >2/>100))∙(300 + ())

Это дает

400∙300∙()()

или

120 000∙()()

Величина 120 000 кв. м характеризует истинную площадь. Поэтому произведение ()(), будучи представлено суммой (1 + некоторое число), прямо дает ошибку в процентах при определении площади. Преобразуйте произведение ()() к сумме вида (1 + некоторое число), как это делается в алгебре. Точно так же, как запись 400∙(1 + >2/>100) указывает ошибку 2 % в измерении длины, 400 м, результат такого преобразования покажет, что ошибка в определении площади равна…%.

в) (Алгебраический вариант.) Размеры прямоугольного земельного участка X м на Y м. Длина участка завышена при измерении на x % и равна по данным измерений Х + (x/100)∙Х м; ширина завышена на у%.

Разложите длину и ширину, найденные при измерениях, на множители, как в задаче (б). Перемножьте обе величины, чтобы найти площадь. В полученном результате нужно выделить ту часть, которую можно истолковать как ошибку в процентах, допускаемую при определении площади. [Обратите внимание на то, что ошибка не равна в точности величине, вычисляемой по приведенному выше простому правилу. Произведение ()(), приведенное к сумме (1 + некоторое число), содержит еще одну очень малую дробь со знаменателем 10 000. Эта дробь представляет собой чрезвычайно малую добавку к ошибке, и ею можно пренебречь. Убедитесь в этом сами, подставив конкретные числа; например, возьмите 2 вместо х и 3 вместо у.]

г) (Геометрический вариант.) Нарисуйте прямоугольный участок поля. Удлините стороны прямоугольника так, чтобы длина увеличилась на х%, а ширина — на у%, и очертите новые границы участка. Какую долю первоначальной площади составляют добавочные полоски?


Задача 2. Ошибки в сомножителях со знаками плюс и минус

Предположим, что в задаче 1 при обмере участка длина оказалась завышенной, а ширина заниженной. Покажите в общем виде с помощью алгебраических преобразований или на примере с конкретными числами, что ошибка в процентах при вычислении площади равна разности ошибок в определении длины и ширины или алгебраической сумме этих ошибок, если ошибку заниженного результата измерений считать отрицательной.


Задача 3. Ошибки в двух и более одинаковых сомножителях