от центра должна стремиться к нулю быстрее, чем 1/
r>2, для того чтобы φ на бесконечности стремилось к некоторому пределу
[17]. В этом смысле мир по Ньютону конечен, хотя может обладать бесконечно большой общей массой.
Из приведенного рассуждения прежде всего следует, что излучение, испускаемое небесными телами, частично покинет мир Ньютона по радиальному от центра направлению с тем, чтобы бесследно затеряться на бесконечности. Не может ли произойти то же с целым небесным телом? Едва ли можно отрицать этот факт, поскольку из предположения о существовании конечного предела для φ в пространственной бесконечности следует, что обладающее конечной кинетической энергией небесное тело может достичь пространственной бесконечности, преодолев ньютоновские силы притяжения. Согласно статистической механике, такие события должны происходить до тех пор, пока общая энергия звездной системы достаточно велика, чтобы – при переносе ее на одно небесное тело – последнее могло совершить путешествие на бесконечность, откуда оно никогда не сможет вернуться.
Можно было бы попытаться обойти эту своеобразную трудность, допустив, что указанный граничный потенциал имеет на бесконечности очень большое значение. Это было бы приемлемо, если бы изменение потенциала тяготения не определялось самим небесным телом. В действительности мы с неизбежностью приходим к заключению, что наличие значительных разностей потенциалов гравитационного поля противоречит фактам. Наоборот, разности потенциалов должны быть такого малого порядка, чтобы определяемые ими скорости звезд не превосходили фактически наблюдаемых скоростей.
Закон Больцмана распределения молекул газа, примененный к звездам, рассматривающий звездную систему как газ, который находится в стационарном тепловом движении, приводит к тому, что ньютоновская Вселенная вообще не могла бы существовать. Это следует из того, что конечной разности потенциалов между центром и бесконечностью соответствует конечное отношение плотностей. Таким образом, нулевая плотность на бесконечности влечет за собой нулевую плотность в центре.
Эти трудности, по-видимому, нельзя преодолеть, оставаясь в рамках теории Ньютона. Возникает вопрос, нельзя ли преодолеть их путем модификации теории Ньютона. Для этого прежде всего укажем путь, который не следует принимать слишком серьезно, так как он служит только для того, чтобы лучше уяснить последующие рассуждения. Вместо уравнения Пуассона напишем
(2)
где λ представляет собой некоторую универсальную постоянную.
Если ρ>0 есть постоянная плотность распределения массы, то