Прояснение молекулярного механизма, обусловливающего положительное влияние продолжительной физической нагрузки, является одной из активно развивающихся областей современной физиологии. Уже ясно, что центральную роль в этом механизме играет стимуляция биогенеза митохондрий [344] и митохондриальных функций в целом, а также повышение эффективности контроля уровня АФК [6,215].
Показано, что у мышей, подвергавшихся регулярной тренировке на выносливость (бег 45 мин — 2 часа в день, 5 дней в неделю, в течение 8 недель начиная с 3х-месячного возраста), возрастают уровень митохондриальных транскрипционных факторов, количество митохондриальной ДНК и продукция АТФ митохондриями мышц; повышается устойчивость к глюкозе и увеличивается общий уровень физической активности [55]. Было также установлено, что у взрослых (20 мес.) и старых (30 мес.) крыс регулярные физические упражнения (8 недель) приводили к снижению уровня повреждения ДНК, активации систем репарации, повышению устойчивости к окислительному стрессу, и снижению возраст-зависимого роста уровня 8-окси-2'-деоксигуанозина (8-OHdG) в мышцах [271].
Примечательно, что физическая нагрузка также стимулирует биогенез митохондрий мозга: у молодых (2 мес.) мышей, в течение 8 недель подвергавшихся физической нагрузке (1 час в день, 6 дней в неделю), в тканях мозга заметно увеличивалось количество митохондриальной ДНК, а также иРНК ряда белков-маркеров митохондриального биогенеза [344]. Возможно, именно это явление обусловливает благоприятный эффект физической нагрузки при развитии возраст-зависимых нейродегенеративных заболеваний [215].
Исследования последних лет выявили ряд деталей молекулярного механизма вышеописанного положительного действия физической нагрузки [120]. При сокращении мышц происходит выход кальция из саркоплазматического ретикулума; это влияет на активность кальций-зависимых ферментов, в частности — кальций/кальмодулин-зависимых киназ. В результате изменяется профиль фосфорилирования ряда транскрипционных факторов и их ко-активаторов, в том числе — белка PGC-1a, одного из основных регуляторов биогенеза и функций митохондрий [120].
Белок PGC-Іабьіл открыт в 1998 году как индуцируемый холодом ко-активатор ядерного рецептора PPAR-γ, контролирующего развитие и метаболизм жировой ткани и мышц [268]. Основной функцией PPAR-γ, как и любого ядерного рецептора, является регуляция транскрипции: связывая низкомолекулярные соединения, PPAR-γ изменяет своё сродство к определенным участкам геномной ДНК [181].
Дальнейшие исследования показали, что к факторам, стимулирующим образование PGCl-а, относится не только холод, но также физическая нагрузка и голодание [147], и что помимо контроля термогенеза, PGCl-а вовлечен в регуляцию экспрессии множества генов, в том числе — ответственных за образование митохондрий [147,9], за метаболизм жиров и глюкозы [194], и за контроль суточных ритмов (гены «биологических часов») [196]. Этот белок взаимодействует с разнообразными транскрипционными факторами и участвует в регуляции функций митохондрий [378]; его экспрессия повышается при регулярных упражнениях на выносливость. PGC-1a, вероятно, регулирует как кратковременные, так и долговременные реакции организма на физическую нагрузку: его уровень достаточно быстро возрастает в работающих мышцах и падает при расслаблении, но регулярные упражнения на выносливость приводят к его устойчивому повышению [290].