Неопределенный электрический объект. Ампер. Классическая электродинамика. (Агиляр) - страница 26


Ампер начинает свой доклад об уравнениях в частных производных, заменяя переменные, содержащие производные, заданные функцией z(x, у). Обозначим p = ∂z/∂x и q = ∂z/∂y, а вторые производные — r = ∂>2z/∂x>2, s = ∂>2z/∂x∂y, t=∂>2z/∂y>2; явная функция выражается следующим образом:ƒ(х, у, z,p, q, r, s, t) = 0. Из этого Ампер выводит классификацию уравнений в частных производных, и на этом уровне проявляются неточности. Затем Ампер касается вопроса произвольных решений, который может возникать при рассмотрении уравнения в частных производных, и здесь начинается самая интересная часть доклада, в которой Ампер показывает, что уравнение в частных производных порядка т имеет общее решение, состоящее из по крайней мере т произвольных функций.


УРАВНЕНИЕ МОНЖА — АМПЕРА

В 1820 году, снова в Политехнической школе, Ампер опубликовал вторую работу об уравнениях в частных производных под названием «Приложение теории интегралов к уравнениям в частных производных первого и второго порядка». Если в работе 1815 года не хватало конкретных примеров, то новая работа была очень подробной, и в ней использовались новые знания. Здесь стоит упомянуть об уравнении, известном сегодня как уравнение Монжа — Ампера, которое записывается следующим образом:

Hr + 2Ks + Lt + M + N(rt-s>2) = 0,

где H, К, L, M, N являются функциями первого порядка х, у, z, p и q. Первым к такому уравнению обратился французский математик Гаспар Монж (1746-1818), основатель современной описательной геометрии, хотя Ампер обобщил это уравнение и нашел его решения для конкретных случаев, без прямого приложения к физике. Однако последний пример касается волнового уравнения в упругой среде, которое Ампер решил, используя метод французского физика и математика Симеона Дени Пуассона (1781-1840). Этот пример показывает, что Ампер был знаком с математическими исследованиями того времени о дифференциальных уравнениях, несмотря на свой интерес к чистой математике. Ампер интересовался и геометрией. Об этом свидетельствует его статья 1808 года «О пользе для теории кривых линий, извлекаемой из рассмотрения соприкасающихся парабол».


ВСТУПЛЕНИЕ В ИНСТИТУТ ФРАНЦИИ И РАБОТА В ПОЛИТЕХНИЧЕСКОЙ ШКОЛЕ

В своих письмах и других рукописных документах Ампер упоминает Институт и Академию, не делая между ними различия. Однако разница между этими учреждениями есть, и стоит ее объяснить. Институт Франции был создан в 1795 году Конституцией III года, при Директории, с целью уничтожить королевские академии. До 1816 года Институт был разделен на «классы», однако затем Людовик XVIII решил вернуть для определения этих четырех классов название «Академия». Так появились Академия наук, Французская Академия, Академия надписей и изящной словесности и Академия изящных искусств. В 1832 году Луи-Филипп восстановил Академию моральных и политических наук, закрытую в 1795 году. Вступление в академию означало вступление в Институт, этим и объясняется взаимозаменяемость названий.