умозаключений наличного бытия – фигуру
математического умозаключения:
В – В – В. "Если две вещи или два определения равны третьему, то они равны между собой".
Математическое, или
количественное умозаключение является совершенно бесформенным умозаключением, поскольку в нём снимаются все различия, кроме количественных. Оно уже не касается содержания суждений, а определяет только их форму:
равно – не равно,
истинно – ложно, и т.п.
Математическое умозаключение – это как раз то, чем всегда занималась и продолжает заниматься формальная логика. Это – соотношение истинных и ложных посылок умозаключения и вытекающего из них вывода. Причём определение истинности здесь вообще не подходит, поскольку, как мы выше видели, мыслить что-либо в его истине, значит мыслить, исходя из его понятия. Здесь же ни о каком понятии вообще речи нет, поскольку нет ни всеобщего, ни особенного, ни единичного. Их специфика снята и превращена в универсальные символы. Поэтому здесь речь можно вести лишь о правильности соотношения посылок умозаключения с его выводом, но никак не об их истинности.
Например: если А = В и С = В, то А = С. Если А не равно В, а С = В, то А не равно С. Если А не равно В и С не равно В, то А может быть равно, а может быть и не равно С. И т.д. Лейбниц путём комбинаций нашёл, что число таких возможных сочетаний равно 2048 формам, которые сводятся к 24 общеупотребительным формам. Но содержат ли какую-либо познавательную ценность эти формы? Этот вопрос в формальной логике задавать не принято.
§ 189. б) Благодаря тому, что посредством трёх фигур умозаключений наличного бытия была выявлена качественная однородность всех определений понятия, мышление может позволить себе теперь без оглядки на какие-либо другие качественные особенности субъекта (спортсмен, семьянин, нумизмат) перейти на ступень постижения различий внутри выявленной им абстрактной всеобщности субъектов. Что такое вуз? – Это довольно абстрактная всеобщность, охватывающая собой всех студентов вообще. Но в пределах этой всеобщности есть существенные различия. Одни студенты получают техническое образование, другие – медицинское, третьи – педагогическое, четвёртые – фундаментальное, и т.д. Следовательно, одни из них учатся в политехническом институте, другие - в медицинском, третьи - в педагогическом, четвёртые - в классическом университете и т.д. Вузов, стало быть, много, и во всех обучаются свои студенты. Посредством умозаключений наличного бытия мы зафиксировали лишь наличное бытие вузов вообще, но ещё не их существенное различие. Установление различий между ними выводит нас на ступень