путем, так что все стрелки будут иметь почти одинаковую длину. (В действительности имеются очень небольшие различия в длине, связанные с различием в углах и расстояниях, но они настолько незначительны, что я их просто не буду учитывать.) Так что давайте условимся, что все нарисованные нами стрелки будут иметь некую произвольную одинаковую длину – я сделаю их очень короткими, потому что у нас будет очень много этих стрелок, изображающих множество возможных траекторий света (см. рис. 22).
Рис. 22. Каждый путь, по которому может идти свет, будет представлен в наших вычислениях стрелкой произвольной стандартной длины (как показано).
Хотя можно смело предположить, что все стрелки будут иметь почти одинаковую длину, они будут направлены по-разному, так как время пути по каждой траектории различно. Как вы помните из первой лекции, направление данной стрелки определяется конечным положением стрелки воображаемых часов, измеряющих время движения фотона по данной траектории. Ясно, что фотону, который попадает сначала в левый конец зеркала, а затем в детектор, требуется больше времени, чем фотону, попадающему в детектор из середины зеркала G (см. рис. 23). Или представьте на минуту, что вы очень торопитесь, а вам надо добежать от источника до зеркала, а оттуда попасть в детектор. Вы, конечно, понимаете, что глупо будет отправиться сначала в А, и потом проделывать весь долгий путь до детектора; гораздо быстрее будет коснуться зеркала где-нибудь в середине.
![](
AACBX0lEQVR42uy9C5BcVbk2/FbFqSQkKeIBcjEUJFwqQA2UQPgwIiTxiBguwkGIXEQHOFBA
ID8XBaLcjCgYD+IJRCk4yAjygRAtrgEESUAwIgFOQQpIAU6gEkNCkLGYwKQ6qfr3861n1V69
Zu+e7pmemb48T9Wq7t7dvXv32uvyPu/1MyYIgiAIZi1JG5a0br4ewQZsTdqWpBXUTYIgCI2N
z6gLBEEQhIAYzEranKTtmrRRSdsuaZ8k7Z9JeydpHUm7O2md6jJBEASRA0EQBKExAWIwMWkL
k7Zv0u7hMVgPWpO2e9KO42fHJe1qdZkgCILIgSAIgtC42Ctp+yftxznC/38l7ZKkzUza6KR1
qcsEQRBEDgRBEITGxD7m3IteyHn/r3xcZy4GQRAEQRA5EARBEBoQCEiexudv5HxmNz6OVHcJ
giCIHAiCIAiNCwQfT0/aY0lbn/OZz/PxQVPmIkEQBJEDQRAEoWGxc9KmJu3XlqYzjXGYuSxF
q9VdgiAIIgeCIAhC42IXPv69l89tTtrH6i5BEASRA0EQBKFxcTAF/w8z3kM8gncj6uLnBEEQ
BJEDQRAEoUEx05zL0Ac5xAC1DiYk7Y/mCqEJgiAIIgeCIAhCA2Js0g5M2rNJWxW95y0Ge/Hx
RXWXIAiCyIEgCILQuNjbXLaiDcGxloggfIHPl6u7BEEQRA4EQRCExoN3GTqUr328Aaofj0na
Jr4ekbSDzAUiP6duEwRBEDkQBEEQGhd789FXQL7VXAXks0kekOJ0vLlAZNU3EARBEDkQBEEQ
Ghjj+fgJH0EMDicpQAwCrAiog3A/328RSRAEQRA5EARBEBoLEPAnJm0nvt6Oj48mrc1c7QOQ
A7gdISbhVnWZIAiCyIEgCILQ2ATBpy+9IGlvmos5AM4nYVhgLs3pGnWXIAiCyIEgCILQuPhX
0m42ZxlAIbTXeHxb0r6atNnmYg0uStr6gFAIgiAIIgeCIAhCA8GnK12atKeTdhIJwjRzcQaI
OViXtBOTtkLdJQiCIHIgCIIgNC4KAUHoTlo7G4qifTFpdyftXhIDBSELgiCIHAiCIAhNQBBi
IL4A1oTlfI06B9uC90UUBEEQRA4EQRCEJoEX/kESLknaPkl711zmIlRRflzkQBAEQeRAEARB
aC6grsF0c6lOZ/PYyqQ9n7QudY8gCILIgSAIgtD48FYBH6gMl6Jh3DO2motPEARBEEQOBEEQ
hCZDd0QYBEEQBJEDQRAEQRAEQRBEDgRBEIRGQKu52AFgJB8/NWcZODRpU8wFHKMYGoqejeMj
jh3Mz/v3NvJ8G3lsVMbv4b3lSXuOr2V5EARBEDkQBEEQagAnJO0XSZs0yL+LTEdzzMUuCIIg
CCIHgiAIQg3gCyQGW5I2PDge1i5AwDGqISML0eRgf9gafAbf7eTzscH3h0XnHBbsMVPU/YIg
CCIHgiAIQm2u+UhF+oE5F6NpFPYXJa0jaauT9lbS9iSZGG+urgFwQdIOSdpjJBnvmXMd2kwC
ANci1EOYzXOOIZkYpW4XBEEQORAEQRBqB/vwERr9083FEbQl7ZakXZS09ujzm6LXs0gU/jPj
sx6oovzrpD2btEeT9lMel+VAEARB5EAQBEGoIYTa+w/NFTa73FxMAIT9lujzBUurJCPw+K6k
XRF9NvzMjuasD4cl7WvmrBLehWmEul8QBEHkQBAEQagdrOMj4gHOSdo3k3a9pVaAOJOQF/qn
U+i/LuOzIaEA0YA70ZHmrBJ43Epy8KG6XxAEQeRAEARBqB1s4SPcimAtaEvakhKf9xaDS5N2
tblsQy0RicBzWAXONue2dFbSVvC97Sy1Vuyg7hcEQRA5EARBEGoH7wXPPTGAYN+d83nECSxO
2h0BMcjCmeZiC45J2rKAQHwSfGa4ul8QBEHkQBAEQag9IFPRU3weEwMv2E8MiEE734tdibzL
UVtADMLPbRec9x/qdkEQBJEDQRAEob7gA4t/krT7LA0+LmR8DtmLFpqzGizr5bxKZSoIgiBy
IAiCINQQxvFxTInPoKgZAouRhnQJicEw6xln4IlBXiwCMDp4vr26XxAEQeRAEARBqB1sDIT2
kZZWOQ5Tkf7MnNvRkoAI+HSl/vX0iBhYBjEIyQiwRd0vCEIVECsiWnLWH0HkQBAEQSgT65P2
afDaxxj80lymocWW70oEYoD0p8hg1Jsr0cbguVKZCoJQDfgMafsn7Q1zSg6sVztyXeu2/CQL
gsiBIAiCkIG10eaJjRZ1Dx607GJofkNG9qIrk3aNFWclykNoOdisbhcEoUo4KWk3Ju1Vvkby
A+8u+XLS5lnPCu+CyIEgCIKQI6zvbM61qJvEABtph5XOSoRYhB+bC1KOsxJZ9Hn/3kaRA0EQ
qgysMzO4JqEaeyfXl1E8NjVpe5pzeYSbZJe6TORAEARBKA2Y46Flg2btTArx7ZbvSoRKx+db
mr2oN/jiaaerqwVBqDKwvvi6KY8l7UdJez9pE5J2qDklCNa1q/iZa00xCSIHgiAIQiZG8PF9
Ps41p3G72/KzEsGV6OdJe6QEgYg37hOS9gsrTl8qy4EgCNUAYgtmm0tyAGLgK7J3BM83kxyg
Pc7jClwWORCIvMngj49g61RXCULDY3rw3FsB7g7WiDgr0Vh+5nfmMhNZGcQAFgNo6h5O2gvm
iqgZSYYgCEJ/MYZrE7Kqrcn5jFdGQLb5uIy1SxA5aBpA6IdPMXyL9+XrHZL2vLlsJZhc15nL
P67gHUFofGww5487icL7YssPPh5Nwf71gBj0Bl/7AAGB55qrnOyxg7pfEIQqYDIfV1GWycLn
+fgAPyeIHAgEiAHSDZ6RtPE8BkIAH71TzEX6+837Nus9LaEgCPUNr02Dxm1+zme8xQBpTd9J
2hVWvjn+ezz3uXztA5K3Je0Zdb8gCFXANXwstaZMKuMzgshBU8Fv5PD7XWAucCd0G/py0p5M
2h4Bs35F3SYIDbseeKF/Nz7/wNJUplkZh35JgnCGlZ8v/IfmfIDPDY5tx0fEMozTrRAEoZ+A
2+LufO5jmlCjxbsOITMREiggi9FqkQORAyGFDyL8BYkBNHmX8r2jknZh0qbxNSbPeaaYA0Fo
5PUgdh0CSRgdCP4hgYCrIbRu36iAGCCwGdlBTosUFKODz4zSrRAEoZ/wKUyB+ZRpdjKn8IBy
AskWZvE5rJ4d6jKRAyHdlGdwg19nLp7AR/Av42S5lhMMvsHrTVH8gtDoa8LEQFhHVdGuiEAA
rRTi26z8GCRo6eYk7WvmfHtbcj4nciAIQn8xjmsJZBvETU0gMRjFtre5zGq/N2UoEjkQemzy
Hl2Wpi30QBAiAhNhWfiHukwQmmpNMG6g3nLgN09o/2FxvMh6txj474AYXMbvrop+r4VkQ+RA
EIRqA1aB9ox1KV7zRAxEDoQAcBeCWQ2ZSdrMWQpCPEjmrRRfgtDY8IL8JkutBaN5PIxPgnn+
TCvPlSisZXCapRaDUpvyCN0KQRD6AaxbB5lLcLAkZ10SRA6EEsIAzGk/tbQIyExzEf7LAna9
ogTbFgShMVAIBHefyvRVKgYKVB5A849qxuvLPGcricEVwZqStX6E1oJu3QpBEPoBxBYgXgoJ
VLaoO0QOhMqFAQC5yX2VQETu32XFfsF+QxcpEITmWBM2B5vsFhKDOSQGq6w8/1wQA9QyODtp
S6Pzh4oGuChNC763vW6DIAj9AGIpodxYYMVKD0HkQKgALdzEkWv8ZnMByig1frG5oOQRmliC
0JQYQ+H+AnOpR+N4gTxM4ZryKIlB1ubsN+12kgOQkOHqckEQ+inPHMvnj6s7RA6E/mEEN2kQ
hFuTdlzSdrZUUygIQvPAm+KhfUMawBMtzehhvRAEEAMUULzJXFKDLBS45qDAInKRr7Ri64Eg
CEJfgFopSKTwrLlsa6XWKkHkQMhg14Vg4vjn0PIhkGcZN+sjRQ4EoengM5choO9C6z3VX0sg
8EPJ8LuIGMSmfTyfx8+jyOLRSbs/IiaCIAiVAqmYp3INUl0mkQOhD2gzFwi4ONrk15MceK3h
UhEEQWgqbOQjgpGfL+Pzvj7CDUl7MWk/y/mMB1yVZlqa9SgsgqaAZEEQ+ooDozVMEDkQKgBc
hpC2FNlIbrWeGsEXzLkUoQDaLiIHgtBUGBcoC8pJLYp14qGkvUWFQlYQYFhkbQqJgc96FGYr
2qzuFwShj3gqaV9M2hp1hciBUB7CzXqyucDjJzOIAT6HyoGfmgIEBaEZ4f3/4bP7EZ8XctYT
aP0f5LFLrNhdMXZfBCn4edJus+KK6xuC80rjJwiNBygZqmEV3NFcogRYNbOqs8OVaIW6W+RA
6BvmlXgPm/UES4MPt1N3CYKQA7gQjU/abOtZ/yAkFCAG7Um7w9IMRh7erQgxDrIcCEJjoYXE
YEqOUA+Bf88S34eL8zhL0x6DHCB7WqnaKYLIgVAm/ARq5UYO7JbD6FHsyJv6P1HXCUJT4Rlu
wvsmbaTlB/b9iusH1pMOy9cOjiUx+DsfY+LQFTwXORCExsMPzbkSWqBEgGyxHYX98dHn/Tow
iuuHVx782FyK0lfUpSIHQvXYu6906t2FDjGXKWRJsGGDPMzi6wfMpQQTBKH58GnGGuLXCVQ9
RsGyswPhvjtYZ/wjtIK/JzE427I1fR+SgEAIGKduF4SGw2vmYhwh7D8aCP+QQU7OUSh4rDZn
JVhIJUQIWQ1EDoR+wqcaPIiv/Wb8C3MaQuPGfIy5eASQgoutWKsnCELj43N83Bxtvv45LItH
UonQVUIRMZbEYJ25QmqFXpQXJnIgCA0peyAuaUnGe5tJDmAVGMZjYUHEe5J2nqXWyxaRApED
obrwfn//NFd0CHEHi8y5D1wVfA6T8LKk/dqcb2C1AokEQagPeP/fLMH/BHPWx0v5ftb64IOP
7zOX6excfmYEhYB4Y9/VnEZxiykzmiA0KkHwwNowg+04rgkhQAygnPyppUlTvMJBpEDkQBig
yTmHDB2bNTR/30naUUl711wK0yesOLBQxEAQmhPIIrQ12JhBDJACGWmOV+SsD34jh8Lhg6Rd
FGz+3YGiwn92ujlLhJUgJIIg1D6yKqj7QoeIK4BHwqkkBJ38/Evm4g2m8vNQEMBacEG0FogU
iBwIg0ASCsFGvNiKC6EJgiAA/yQ5wHpxJDfskBjk4Qo+nhIIAVnrEIgBKiNPCI4rAYIg1K9s
4QnBseYSnmCOH27OMgglAYoqwjPhRSoLEItwH8kBYhzvNpdKPYxfEkQOhEFm+QUr1uJpMgqC
MIaPw6lAgIUR2UbmkRiUWif+y1xc0zcCYlDIIQZIabqc5/wp31PqZEGoT3niS1wj9jZXaBWE
APFGt5gLQoYlca2l8QOtPA6gcNkrASloUZeKHAhDy/KzAg7LBXwHJ5P9bzIFCwlCowEWA1RR
v8JSi0He/Ibb0T7m3IQ2ZXw2JArIXPR20v6D3/NkBMkRlqjbBaFmhP5Cxt6+I48dYc6aeBiF
fgQYv8hjb1G5ELseTuf8h0Xh9qRdF31G8oPIgVDngBCAqqgIcG7nRFeMgiA0BqZz01+QtHt7
+WwbBQI8dlhPi4EPRgYQzNzKzwO+CNoWKhoEQagNhEpEzFNYB2ZSaeAtjH/nGoGYRWj/1/dC
NkAMEGdwoqWWSEHkQGggXJ+0v5pLh3qzuZzFl/SyOAiCUB9AKtLzzcUkldrAofm/nMJ+FjEw
S7MUzSLp+HqwTvjAw63qckGoGWAewzXoOM5tuPxN5HyFUP8M20eWXygxay34Hud6p4iByIHQ
mIDrAFwA3kzaj5J2fNIOIGm424rjGBTPIAj1Aa/JX8l5bBlz189nCPrXcs5nuR2F7ghwQ7zG
XHzB+ozf0x4j9EWA9YAguzlnvAr5/RZb+DCnd0jav5tLdQ4LAawDd5jLZripgv4tZPzWppzf
FkQOhAZaYJAWFbnJ4TvcRkHhf5J2cNKutOJYBEEQah8Q3JF2EAGE3SU2/VaSgiuoJGgpQQxg
hVhMAWOpKT5JqA68uwu00SigN09dUlHfgQwgU9BeSfuCuZih6ST6r5PII91oRxV+SxA5EJoI
2wJBoN2cmRGP53Chudx6T30oCELtwPsS72T5RRBx/EQK+0tKCADeunA9hY32DIFBVZGF/gBB
7EiP+QfrqakWegL9A4vA18zFD+xuzlXoDXNpRRET9HY07/tD5r0iATGKC6tANASRA6EKi0Ah
eD7MqhswnJXpCBMfRdW+Q60DtIQofPK0la6SKghCbWB0L+sJ/I6v4lxv7+WzEApQy+DhpM3P
WTsEId6vPDDWJifts0n7srnUl8uiz0DzjUxX/6jw3I3ah/H8gtUOqUURRLw3yTrmOCyEK7lP
/8WcS1ahjL2+1G8PC/Z3XwDt+0k7OWk3mEtlKogcCDWyWAwLNubrbOAzCiHrCFwIXqem4FEK
ETD9ys1IEGobXYFgNtLSYENs+EhhiKxky5O2yEq7EkEA+RGJwbklhDRZDgQ/Znx6bFidp1GQ
3YN7mJGQLssZr+F5MM6QKhNBtIiJW2X5VrBG60NPCFA74GCSgv353+Ei9Ouk/dl6WvRbqvDb
/vdbOfdnJ+1Tc1bGB6UUEDkQamuxQOowaPoeG8T72MJFHAv0Rfx9LPQXm7MmCIJQm/CWg3fM
ZSIJj/8+IP15AoW3GMDlaCXnfx4xgMC2u7q8qYF9AS4uKJ63m6VabeTJf9mcSxrG0yU53x8f
PAd5vYAC8b48tolEdmED9yHm0ZdJrr5izkLg+wX7PpR1cPn9ICBTcQ2DaqwbyFz2VXOJSWDR
WUf5Q3u+yIFQY8QAi8V8TtIzraeWZSC1FwC0jleb0zTeZc6KgMUK/ofyPRSE2kNXJHR4bev3
uI5clDPXwzUHcQgb+J3u6LOhdQHuIjury5sCfixBiJxMAf4MCpHYJ8byc5dlCPKX5pwTY+kQ
Pj/JXKxbJ4kt0msfzfNPb4D+i61yO7Efj+LeDivfGnOZhWAdQDGyFVY6qUDWHM67dxadawTn
L4KZ57D/Ea/krTxYK06znpYeQeRAqAHAnIfMI8hXvt4G37TqtRNYIKAdgqkReZNh1rzQVA1V
EGoV44N1fy4fz7M0CUHefP85icGxJBqxxcD7JUPAgTZ4Wi/nFBoD2wKS+YOkvW+uuJ53c0F2
u6/yeQy4nsEnvpRCCalMF/D7KznmUIcHMS/DG6D/fNav4yiM78e9HUL4A+YUb8/bwNQZ6g7m
Nwqh7UNStifnr8cWzm8RA5EDoYYBn+F5XDhujxbowdZ4YGGD3ycCk+ZT0/Fbc7mU55l8EQWh
1rAz5y60tp83p+XtttJuCLcm7d9IDDqtuDJyKCRivl/HdWAlBQxVV28sxMGxPpj9m+aKYB0U
CbIbePy1HMEf4+m9Er93lvVUNn3YAP14KckRBPLdeAzuVkgh/K45V6HVA7yHzuL9wjow29J6
EpNICLyMONxSV6JlpvpGIgdCTS7Il3BRvdJ6mvYHU9sRayDgZnSLOa0RzMDbW3FlZeVAF4Sh
IfAQ3kYHAtlVnJ/zylhDLqXwcpKlQczd0fn9939IYnCoOfeSadxjPtGtqLsxkwW4liEtZrs5
f3cP757yQkQMMO4QV4Dg1Sxr0ywefz/n9yCgvpTz3jbLr+A7lHt0vEeGbjr7sD/wuLulmYXg
KvWXQfw/iOG405xb1qvmrBN+r/4vPveyobcIgrQs1R4uciDUJlq5SUM7t6oGrw+LyxEUEGBJ
eJHXeqsWFUEYMkAwGRu8PsacO+CmXr7XZs6FcQ7ndizcxYIetMencm2aq26vS4A0nsG1O3Yf
8YSvPeN7IJ+P5BCM5RlCNARUuLityBiHILBwbXnast1pDqLQuqWG+i2OvcFePcNc7ABchSaY
qzPgqxKvjPbwFhs8jbyveRJaZUaQGByd8fkfW1pVXRA5EGoIvpZBGxfLG602TXve3WAxtQzt
1Ipggby0RgmNIDQq/PqwQ7TWn8a5WGoNQYYSuBGdbs4nvJTb0VgSiNMp7OGzm9X9FWGw1/M8
Sy7ix86h8IqsdJ3B51v5/OXomiH4TirxW+9k7GUxYc0SYD/IGGdwbVlAYnBnDd0/XNtFJFBe
+J5szp1qEfdDuEN9bD0TiAymVR2/hboEpwRzFMQeweLIBLXGnMvy4SRpeH6tSbEnciDUJLot
tRpcYbVbMTL0L+6gcHEdN5v9rDj9mfwWBWFwBE5s+mHw5ppAUCtYcfrDAgWcyyjsr8oQXsLX
cB2BK+GjVpxjfYfg+Xa6FSWJALTu97EPF1dhbWzJIIgAtPWw7vigU7h7zbVipc2dXK/jehjA
CArl70fn9sQgVv7sxbH3TPD5YcH72yxb+7+VQjQy93yZ4+fUQGDF925L2nMDvI+UEtpHcD+G
dWA8r3OrpVmVYB14wsoLJB6KfbCT/+8E9iXIDQqafZfHECCNmIfztE+LHAi1jblcaO6tow0Q
mon5JAoLuAEiLuH31rNYiyAIA4MOClReMNs7OBYKJ54YwA3wwhxiED6HUHs75/mi4P1RlmqZ
hWxhcBYJ1BIKwbtVuc98cTuQAPi8o3DWzKQdFnxmtfW08HjiuD7nnkMTHmv0fUDtyug4Pvdp
8BstwZgD8ejO2Qcgl0D7PpWECd+HtvtZcwHOKznuBkNJFo51EB3k+kfsBeIGkIXpbf6Hqzhf
BjN2oC+E1P+fNpL/A81lfrqf/YsxeC37eI4NTJYkQeRAqBJOoDbnKOs9s0itoZOCw2ZeP4Kd
4NeI6qpKiSYIAw+4MWwNyMHBFNrmkLRv4nuYlxeQGMB/fCzXm89aagnYxVzMwvYUlFDpFqkW
7zGnUYZGFYGOk9XtuYBw+QcKlQ/awGV0gjB7F+8j7ssfzbl6QuD+Rc53RgSCfhgLMJb3dUPO
/8kSqMeQBFgGwZxCErkx43zoj5e5P9wZkJbQJadlkIgBSNy3+d/Hsx+wl0HJ9SNe1ybrWVG8
1rTt/nq8VXA//hekQ18cXPcllhY+U80ikQOhhpn+WDJ5+P49mbHI1ioK0WK/mA3mVpgsn+bC
9IwVayjr5f8JQr0grDYLze0PKCDA1eh0EgejsIaUhQhIvY3HNnMNCveK4dH5DrFid5EYo3UL
ijDDUn/7AonXZKteTJZfP6GMgcsPClSeYqlGu5X3uivn2ixDMPwMiSCE9i3RPoWYg9XWM+vQ
ZzlWQstBeH2dOdeA/eI7vewF1XK7yiItR3JM4x7txOMgRb9L2uNJe8XS1L3VvraBkCEsIAb3
Waqwa4/uM9yA26zYnVB7sciBUKM4m5v7CQ0yUU8nIbjcXLAyFqowa0KLbrkgVB2hQD8sEOaH
B+9ts57BpWN7Oe+wXt6HVnWlBI0irKTADG000r8i+84aCp/VhBfKH7XUx7xAgXdkznfGUfiP
icoE3uu3Mu7jpyQNcdYhH2uyNBKccR3IfvN60t7MGRsDOVbic/vMQsjE5OMaQKiWm7O8rC+D
YNQawj71gdxw8YXr0JmW7y50j6mIqSByUNPwPqNnkOU3EpPHxoBgLe9iBH9HBENdY9maJEEQ
+g6QcZ+BxCwN6tzK9hkKeKHQU7DUahCik4LFRJ4HAhQ0xsfwOITHfyVtV372JutpGWx2oD/m
kBjAV73dXEzZpgHqp9gVqDs4HlsIpvA6PoqOT4sIR0gOJ1lxulIPZOeB29rqjPcwNpYN0bjA
2D0+aV8xVxRwIvcdVHW+k0StoxeBu9b34UJAfO7g/YMr1EWWuiYXov/1FO/jFk1RQeSgtpk/
SAGsBtfVyYJUycIFQQKZEX7P/xnHIrRYmvZOEIS+CwheGIWFAFrjGRSG3qQgtLXC84bBzX5+
XmT14WpRK4A2/emoD30/VUtgHsfHdRn3AHv/PzOE3ll8/DjnXDE5gOsQgpzvy/j9ZVYcV5Yl
WFdjXPi9Im/8geAiCB/F+XzdARCjv/M+eFeh7jLnU6nrABBIvZbnyzrniAHa10Jij9+Yz30V
heS+aMXB31n3oFNzVhA5qH0czg39PxtYQG7hgoVFG9VaYSVBXAWC5RCfoIAoQageutiqMa+y
qqQLlSHuM2h526x62dx86tGVGcdBCD+NjkODPp6Cc16dis0Z59pm2YHKg0mCQy34VJJguGvB
EgKtOeIlUA0Yxd2yipBVYy8r8P7dzL17aZn3vdrKAIyjH/H/wyL/M8uuUC0IIgd1CAQMIrtE
o1cmbOFiuZCL6R2WWhFQ00H+j4JQfSHGJCwMGUYHZC3E95N2MoXW/pIDaMt3s9QqFN7rkTz+
v9G48GlHPw4E2LH8vM9INCr6HaQrhXLnlSHuUxAbBBFDwTSd/wNxEsiktZhkANr8zug/l7I4
9AUHs4+mZLx3Ka8PsSXXDQBJwP9BbMG1JGuHBooAufUJIgcNsHEj+PhAaiEaefOO/xs2xdMt
9ZH0sQjXWhpQl/ddQRB6n2sFzaFBXcu9Zt33N+LIYBm4z9KCZ/69STmkoT/otJ6uSlMsTVka
joWR/G2svQ+ZK5K2O6/ZB63HloMuG9iaNXmFyFp4XZPNpRo9ide/xlx8DYKwn7LSNQcKVZgD
sYvQn8ylHT/E0hSh+AwCfY/jWLiKQnt7Hwl6VralKTwfyMnNwZ6puS6IHDQIsJBcwMX5QWsu
7d4IEgRoPM4kOYIVAT7S0LqEsQha7ARBqGUyBm12mBUGWni4eMBH/6aM78ClB/EBb1Zpb0e2
oCczCMsUrqEbM9Zfb9UIA5AhcMMtB4Hnq4eoL33cAGIc4DYzna8BxA4sosD9gA1sETL0ISwD
O3N/wvMFwX1exz7bk68Rw3GNuTiH83kMCi8owe6u0hg7h/sliNpsU/0gQeSgITeUs7l5fK7J
/ruvnundjKB1gfkV7kVIe/oYNSLXW8+UeYIgCLWyjvniWQsDpQYw0tIqyJ9kCL+jA4G8v5hA
gT7L790XtHvGUi00iAFchODKCX/5nbgG+/oFf+bnPh7k/tyee8AcS92FxpL0XJy0NyiYd0f3
wPdrtQEyAMs2/Pm9pQfWAu/++gbJCfr+/1JYR6wDagys4LWDVBxsqUtTX+QEI8m7j0QObsi3
WnHKWkEQOWiAzcSoBUCGgVus+cqWZy1mIAHt5vxFEWB1CRdlLK4dpoxGgiAM/PocrlHlCp5I
5bovH/15fKrXaRmf/wqFTax1H1XhunehINqRscZ6AXaU9XQ3w3p7rxX74U8n2UAM3Koq9Gde
34GgwDIw2dLMQj5AGoCf/v0kMV0V7iV9vc5wj4Ew/nNz7kHov3Xsw5Do4fg75hR8Xw+E9jAj
0EqOgelWmZY/7Du4Hv+Cvx9WOR4oUiSIHAhDSBB+wtcL1SVFfYMN6T/M5QL/b3NarNutZ4VH
QRCEgVJeTKHgXo5mHxaC4YEQ21uKV281WGnVcYvxAbGrI2JToIC9iu/FwnqbOa32lZZaaKdS
QN5SpX4Mr3EyCRRSpe5NgdlICJBZKCtz02AF1/q+8XGAEPTHmHMLaicBQ2zDieYsGf6//ZTk
YIEVx5V4+PEzsg99N5FywmnmqpgvtFRRJlIgiBw04MaDRRGZKi6RwJu5SBsXWiysN5oL6vqm
KaORIAiDsz4vouC3pAzh93MZaxjIArT52yzbOpBVmbivGEfh/42M9zrYwmBpD7hwwp/+Pgrl
CGw9k+89WKVrQx8g7z608OMpJEMWgWUCbqPPsH86c8hAYZDuuScw2HfgHnQP9+dNfB/Zj9aR
CG4fkKm/RQQtJBro833Y73+rcA9ELRGk/Iab0ueT9ralBc0EQeSgQYFFcU3SfqOuKLkRtJsz
e/tNC1owmFV/Zz0rjEqTIghClqIha33Ae6eaC9RdGn0Wbi7TyjhvIRD0gQ9zfuv96PXGQKiv
BrBO3mKlM9ZkuWMipgCuKtCE+0J3OMcCnhMWjq4K+xba7snmLBBILuErdcPN6hFz2vcVlu8e
WhjkseE19NDOn8jnwP9asbsvFFUPmwsInhCQgxb22T4kQuE9wJ71ZX5vk/XU+GcRoVYSlPEk
qDeaso4JIgdNIfzCZAkz5OmmYiXlAJuIr64M8zcCldvMaVVWmDIaCYJQmdLBKLxeS8EtK5AX
2t5PSpwvFOzGkyC8FhxD6k3UHkDu/TD/fIGk4NPo830FtNNr+7j+wTJyGZ/Dt/91Cu8+U9yW
Mvu0hSQAgvDRJAdrzLkLIXbgZSuvKvFQjAtvJZpGgrWQ1zvdilOXFii0n0bS460+sHos5///
LMkBBPy5JBKruW+1lBhHvi/bOCafTdo3TMk4BJGDpsFETn4sGPeaTIS9IQwUAxE4hZsNFmhY
EW635gzoFgShfOFvKtfbLOE0y63Ta/Q/zRDEIQC/EXwP2uKd+NlQmEOWIGjeHwnWMo9Wfu+T
KvzHbdFaWQkeIXkBYEXoylh384D/gEJuPo3nGJIBWMURSwFryVYrdheqJUWYzzL1MMnVly21
aMB99QIK++He8iHv/bSo//FfR7EhU9F9fI5+OJ1EoqXEdfhq2SATCyyNQ5TiUBA5aHAB1y8C
53CjOsqUdafcBTx8xEYzj4vvr8zFIsw0p6VZFWzg6ltBaB7kzXkcR3pRZJx5JiICEGah3V8a
rTEAYgig6X6OghuCUeHOOJvvI9XyHCt2uXk1EujwHWQk2hydHwqiffgcbizQPENL/LRlWzDK
XSP7gu5I+I2F0UJAgCAoH8i9CxaR3fn/P+Z138j/WhiA6+zv/htnnvLHdqUQD5K0LCKMU0nw
wv7Bf4WF5fBgzOE8vhiadwfq5HgJCWkhQx5oIRFBbMNDPO+KGugzQeRAGEQht5WC7Q193ASE
FFjIT+BiDBctZDSCafhaEQNBaDps4/q6EwX6UKhCYPA665mzfxLfy8pGhKDZ/c3FhM0OhH+s
3fAjR5GryVRIfJZE45noHNsFz0EIjuA1wu1mDx6HBbSN17BxiPeFlkgZg2uF+8w0S+s14H++
QeUMXJDgFrUpEnprES0ZwrlZGvtxUM692yn6fhf/N8bEl4P7herMt5D0wXLyREAq8giXt7yA
ZP6Ye1fBZC0QRA6aDm18/L26oiqLPTbmk5J2vLl6EbAiQFuHLA+d6iJBaBrsSAXBcnOa10K0
50Go2xp9Z3SJtQUYRsVDnG8fwv3OFJSBUSXOZSQTZ1paRGslhcEXLHVbWmPOtWUoBUMQJWiu
jyEhmMj/9iqF4Md5nR9lKGAGshBZfxEK49gfnrbUFQtEBy6+B0aC/DruITMttSh4S4G3UJ9l
aSB7J/egrVbsmpU3vo41V7cAgeA+E5EgiBw0Gbxv45kUXFeoS6qy2APQzsB6cDc3cfh3nkyi
EFeQlEZGEGqb8FsvQuYJfIzTi0JwG0sBNz4OF5iPKdAjt/4B5mIKvlmCaOCzD5irtxJjQ0QG
oF2ekHHtb5II7EHh72FLqxAXhqhv498FAdjLnKvQOTy2lkIzrjXUgJe7JtfamPLXNpf7w5hg
P+jgftzGvljP46+QaCJ+4Oro/8FCBEvPv0X/vbOMPmnl2IXr0RVWXDCt1vtSEDkQBgDf5qZy
b41rWeoVWJjPNef7iewbyMIx01yl5RWmwG9BqBfS35Ij4LVy/YTgBi126O/vNdlbMr472ZyG
Ht+ZFLy3zbJdiiZToH8m5zr9d7ybEvzSYWXYGPzmMJKA03lsVY30rScDWBv3s9QCguw8cJmC
m9Dz1lgJHvz42UzyuLMVx568x8dDAtKJ8fQU95EpJEwe+O5d1ntxvFgZBXIC68I7HBdSEgoi
B00OaB/gW/p1kz/8QC38/hGL+3Jzpn+kPIXZFoFh7eoqQahp+Pzu11hxcKgXsPai0P2B5afY
fDVaY3egQAi/+Gcp+L7M9xCo/G88XwgQiLElhL/9KDyv4esPSQTiwOZCDikYbAsmrCcnUSAd
zwZFFWrF3EayFbsK1buVtZX3LyQBqzhuDuRx//9e4PHdonO8zs/M4P7REhDXeRxXpfrJF0HD
XuSrLV9orricLNmCyEGTC60wP//QXDXIp9UtVUeczcgoCHgygCCvO5L21aT9wNLS86aFWRB6
XcOsQkEmLzNMOF9Hcy+K3TCQuQc+/rvmnNun/Xw3uJYRbEfw9cboOzP4eEWGggDpJ3cuY1/0
Rb2Ar5E8IIWyt1wgAHpaRFgKZaxZ1bw/HiA1Iy11FdqHQi8IwdskBLAOxJaXgbrGocISksBT
gmPPcG/4ghW7pcFyAMvS9Ogcr/BxDsdOOe4/cWE1uLfCXesxS1OaNkofCyIHQj9wTdL2NRc0
K6vB4AILOnx+4VqEOATk44aZ+ClTwLIglEu8+6oYsQyCAEH+JnNa13nWs8jTtgwB32M7vr+9
Oc3wNAr/eL43P5On7Y8FYVwH4gSQkeiz0Xrg4wmO5JqxJ9dwH8/wAP/DCF5PYYgEvZAg4X9M
pSC7G0kP4gbeIjFax9edJe5TIwGWkQMsrVjs4wuAODPRKsuPIbjdencfyroviI1BwDECumG5
9rEFSrMtiBxoY/1/m9aZ1BosNZkRBxs+oxGCCueSGNzP+4H7osJpgpCNKRS8R/H1M1ae37wn
AkjAAK313RSy/Lo3jUR9E4XzkBwgSPhtCrFZgNA7jIqWw/h979tfyCEB4/j76zLOB2Ef2uHY
rag1uFY0uCPdQSHxab4e6sr2nhxNIYmZyOMvWnERsn9lXGMzxF+hyvN8ksYwe9XDHJth8HGB
9/SAjOPzOcbKvdcF7jX/bc5bYK4VuzZt09IiiBwIbdRcXKmuGDKC5rGYizTSzx3OTRT+n0ui
DVPkTWhWQGP+HXOVYadSqB5JIfoevlco8V1o179BUrEvj3dEipH3efwdCvUhILRtKEHavXXg
NZL8jRSCcR5ox+cFJMD/3kwK9XGNA1gLEDuAGIU4xelfeV78xq2WX9hroNaKPHehvXlf4J5y
cECsINjOsTTVaiXrYr0qffx/ADE6hut7SF5Xsc8OsOLA34X8/F4cZ/48f2Qf+qDk0F21UOZ9
msXzI5g9rFvQSH0viBwI/cR0Cp8LrHTpdGFwNhOjkLKUGwo2/Xu5iN8SCCQy+wrNCvjT30xh
89dct8bxGAStYTnCzRQKZ9MpSHdxrwERiK0AJ5Js+GBPL+jh/D5QNk8YxPe2WU/fbaOgn0UC
di/xf/Gb71rPQNwHrWeq1MFao0Jh1LsLHcp+m0bCBssnKuq+zD5e22RCp3fPgfX3Bo6LVdGY
eJqksTX6LsYHYkZg1QqD3p/g+N6twuvw4+jspJ3B8Z41PgVB5ED4f4C1ACbrm9QVNUUSCiQI
h1KguYqbzNk8LmIgNCuepxD6fESWT+/le23mKsbCtxoVhWE1uJ/vdVixpnccH1+IzgEfeVgp
1mXMwVAI+zhD2YL3D+I1rw2O4fNwi1qRIaz5wNQPyxDWB0vg9UQLyoujKKjCIrMj+wv35qUM
MtBizWX59Br6fXkfJ1nq/uaxjYL6PpbGHYT3dVxG/2Ps/b2C68C9QWzB5Xzu9xAzuRALIgdC
hvCJxQul1c+x1PSrhWLokNX3EFpQewJp5uAXCh/VWyw1T8vNSGi2tQvC9ZJAEPdZb5D68dkS
6x3INdxwkAmny1LtfZaLy2bLDjpGIbHhvVwjsgFtKDGvP+D5/XXtz//wes6asKrMtaIafZv1
Gy0kRRBsYRVA1dy9KWiuJ6lBrMcjlh07MJDXPBD7on8+rI9KGG+hwt4K1zJYT/6QtIfMuY/9
Mhhzw/i4XXSOjzlWZ0akYRPH+pYy7qOPJ7yD9wvpsi+24tgC7RuCyIHQYwH5Hhevu9UdNQ1s
uO3mTMoPkczBHzUr7aEgNAOBhtBzJIUnr7kexfaZnO/gvbVWHFw8ikJTLCDuScHtvehc+/Dx
rRLXCPLwciD8xQLYqOjYGgqPi2tMQRFmWjqOfbOWZOBi9s2qBhtbo0kAO/p4DliwoMSBheox
jlGPpSQKOwXkAOTjVfZvmI1qC8fY8dYzS1VXGf8DAcuoWTSfRLTNiuPWRAoEkQMhc/GAmRE5
9b9uSl1WL2RuPTedb1paF+FgkrwudZHQBIDQA/9tZAGalPE+BKGtJb4fClljOK9WZgjGI/nZ
t61Yoz6Nj6/lnH86r81bMOKsL/damnLSnxeC6Hn8vaFch0FaTjUX8Lod+2eyOVchJEhYR4E1
tg5k1Yyox/XVu31dQ2F6bR/H59F8/np07tfYx0eSCIbHff97fMlckPJw6+mKVM41PMSx2m4u
nrDDFE8oiBwIJRY/v3hAuLzLUt9DEYPaJnMem7ixQDOJeJFzuAkgA8qKjM1aGiKhkQBt6Ml8
fg+F1ZkUuGdTwN6WI7SPjI55H/AN0byBW8jeOcK9P/Zmztrq8WLO9X83Z153DsA6nFXgLfxN
EBFopVGYLXYVgpsQgmX/YvlZkOL/Uc9rjb92uHztHgjwlcK7WSFbU2xVeZP3ORb2fTzJiSRk
Z3OMe/e1vSy/gnUI1NW4gHsBSO1Rwf5e7/dHEEQOBoEgXMLX31eX1OU9NG5Ap3AjwaaCjBao
j3CjpcV0BKHRMCUgBmHK0ktJDp7PEYImcV8JsxKN5+NL0WcnUEh+23q62aBtpcA2hgL2m5YG
RkMLfFkklNWC0OsJgncVGkXhcT++j7z6t7F/wkDiRlYw+LgCaPo/4T1bw/cO6SM5ALlDkHub
pcHEvv82k4iCzC4MvoOEIHBBuooNeICPcDdCQPqDJQR8T2jvM6f4u85cljsV0BREDoSyNwpo
0BCYd5GpuFY930e/2WCTQTrHC0j6sPFcbsU5swWhUQDBFu4tN1mxdcxrYzfkfG88hfq/B4Lh
ITnzairJxDv8HH4TWcPmWerK9NukfcrfO93SglRbIqGyMMTrhA8mbuPasDv76m0KsTeTEHRE
QnMzJDrAf/sS7+UdEaH7Rz/O+x7H6IlU1vg+7GBfo35NWBEZjz8zF4sAi83vuX638p6NsmLr
T3j9IAPncE9/1YrTk8pyLIgcCGVrSq7kxnCvuqOuiUH4HK5GV3Pz+R9ucvAdftLq3xdYqM91
xqooIMfuPvDnj+MExlEgeynnHK3cV3zxMaTd9LEBH+R8B/E8r5FYjA0IOX4D/uTIZAR//FeG
YH61ZAiMPnZsDwqaECzhQ78fic6jvOYnuGbUa1ahasIXz0OCh4d5z4H2fgjXcBNCDBhSmA6L
SCyEflgDvmLFRcyW8V6FeJ979YTgPuP+brM0E9GPeJ8XmXMVbtb7KIgcCP0QKuFH6VOXdkuz
0HDAhoZiSbAmIPsJTNU+dZ3cjIShILBeMEfGG2hA77e+Z4I5kMLRixm/gbTM0N5/nPE9CPbI
MgTLwZroeFYAs09fiuMb2P5pTjO7PGnPWXb+/sIQ9HGYvenEgAz4mgO43psDRYFQfN/+wnVy
NskTLD+wwK7iWOtLn2EcIiYMFqiJHO/+PBj/8yx1aQuBz+5gPeMLdg4IhicGbeZSWmOdP0Br
vCByIPQV2Agv44bhU5oN04bRUBsd7iU0UDBbIxbhpxQWlPJUGEz4AlnTKLRC6JnA9WYKhaNK
1p3ws1stzfYTAsIWXDY2ZbwH4Wp3CoFh0TSQlawAZlgC4I8P95C13I+6LA0WHgoyYBmEay77
GP7y6yjYwqLxM17rG1ZcVCvUOgtuPKJ/4JKDoGxYDWA9WBr0lfXxXnu3pBnWs8Aexh0sB3FM
w+18D8HhXzQXN7Ce88XPA28twJiGku9uk3VYEDkQ+iAw+gUDpkyY0U+34hzLQmMgznwC6wE0
UAhSu4Obyg2W+kZrExEqWUMsR/iIxxJeI6iyjQIrxtu9HItwe5gVCOV9AcjBxui3p1P58WnG
umcUoBErsCg4z2Q+/jHjP6230vFYhV5eV2O9DjGR13sA5zGsILAOwKIBDfX/Wu8WmYLmfA90
B/e7PVKg+PdAwC7gvllJHJePgTmW5w3jDh6IiCbe25GvsUe/TxkIRMVbfhEg/z0ShQdMxcwE
kQOhnwJjCzcXBEY9a2kWBKHxBTpowJCzHO4G55vLygErwpISwp0glBJ8p1BQ3YECyxORIA2h
yLtMIO3oMj4fQUEpLvZUCfbl47vRtfkg4X9F655RmL6Wv7c0GPNwTYJ14G812NcjAkIwk+0w
/ge4NsE6gIDs56O+11yuPkByp7JVQg5goYdmf2/OmVCQh1V3WHTfYPH6trlkEp8jafVWAYzh
S/h4FtdvuRAJIgdCv4RELC7Q5CHw6hpTerNmAwQi+BvfaU4Thcwc/26ucmanhAmhjDXkcEsz
p0BjPZZrNAI54fd8bvQdBMPCahAXCsPn4arR3Ydr8FWL8btrouOfcCy/EB2HNvYOkgeQY+9H
3h3MjVoRsjwhmEsSPzogW3CHgksorAMfZazhcikZ2PUTlqdxFX7vEc4B3McJ1tOqs82Kg8o9
QZgf3EtPCg4nKZzNz4gYCCIHQr/gFxhkYkBQ2jKTdqlZ7nv8Gvce+bJR2+IcjolQsysBozkF
//Cej6AwE2rgt6dgCs31Fgr8IJvwZ/9J0naNBG4oIfagMNPN9Qf1AOAS81US1E19GM9jSQ42
Wc/gyyn83bhKuLc0wHLmrWXd0X8uDELfZs0tHJtKwfNYEi+f1nI95yV80leXcY2as/0HxhfS
ey8P1kQj+YUrD6xMv7TyK9Fv4jyBYP9xGetzPGa8OxO+e6G5OgcF3W9B5ECoBrBp/4jPF4sY
ND2gOT3DnI/yAgpqiEO4iZvZCI2PpiAEsZABDfs3zeX939OKq22PITFAEHBbIGRP5FjKWnMg
aCEAGAGVXzen/d7M8XZlH8fYZ3ktLwbX7sfrIVacptQL5PgPobZ1KLIJ+edTSFI28jk00afz
fRCu2zk/V5ry1A8FEAAMC/tBHDeeRH5Eojue46+rgnPeyvu5usIxM5frMjIR/cBSq4PGgyBy
oC6oCpC29DhuSl7bpgWmuQVDmLMXUli7lhsiBEO4hixTFzU8Qi0lamEgJmU3c1psj1DTeSAf
Ea/0SHDcxxzkAa48x5tziYFwBZeYNRUKVyEgpG2g8Iag5g9IVpANBn7dz1Oo8+vbMI71oXLD
aAmI1xEkAt76AjzNuQe3FWRE6sz4rjB4GBfsmRMDgbybhPQSjvlKCoeuCMZkOcC4viZp23Hu
LI32bO3bgsiBuqBfm5LXqv2Qm/pTkWAgNLdgCECr9Ttzpmu4jcAEDpejSkznwsAJlVn3rBzX
r5Ze7rtfH66gcLqZgukNFLTh5vJh8Pnj+QgCAX9o+PUj5eORJAAPW3EMgc/SstKKq7UaycTo
Po4vXOPrFLCfpuDvgzpXU6gK0Z3z/wdqvTVLC5DtkrRvmXOlwuv3Lc2Is5JCX0eZ81So7pzK
c/NazTG22XpmEvJjeC8+r1TBVijj+q4zFxfzBxKR9RoLgiByMBCAa8D+STvJFIQsZGMTBZYX
SCRRF2GmOVe0FeqeISdwXuBEqs6RVl4AbbnCxH58hEDyAM+/D4WkT4PP+XztU0kmPKABh2va
LdF5x/CxPSIG0MY+xDG2pI8C+EL2RyuPoz/gkrPchs5CMMzS2IE57NdJlmYWAgF/PGM+yYI7
+PcJQj9cutZmvL+C8+Bk62kh8NmxjrLiqsb9ISvDOVdAOL5HUv0tUyYiQRA5GEDhYiLJwX1c
bMKAQUHw4wSbUAcbUjrCvQiWhGUU4q6VADPogGb9MAoxaMhcszMFGlgBu0oIHBBSTyTBg2vC
MxlCus/ig3PCR/9uKy7OtCFaK3zBsXUUdiEobQwE3liQOYCffSaD5EwLBKy+CFQYp0gDuX1A
bmNhezAEK8RUwF3zYBKq3S2tSHw7ycoaK84s1Fu9CGFggTHdZi5V6AnWswqxccy2cQ6F73/A
MX14FdfenTk3MYZgLTiFY0XEQBBEDgYMyEYD7dVtfL1NXSLkbFIWCFqLuVGhaBW0xEdaGpza
IsFmQAnBdyg8Q+gcyfsB7SWKXCFgfGkOMYDQfSaJ3GZ+BxrJ8TwfBNc50T3DeT6J7uVnSCg+
yFgv8PrCHKE+qw4C1p5drNgFw8cuvNfPcVqw7GxH1cjkkue2tSMJF1IAT+BzC/obxdXKKUIm
DC5iQbuVBHpGDjmA1QwWMR9/MIz37W1zcQezLdX6H0QC2FHmtYTVqUFOLuNxnPM5UyYiQRA5
GGC0cuGBuX+ZNBFChYCwcxSF1Qso9Cxi69Z4GhBMNpdqGILJPeb80p/JEGCyhNf9+d2VJHIr
AwEE9+7TjN/zwv+o6Nx7BN/32IXC0UvROWCdhG/005YWFwM25gjFR/HxhTohy7AOfMVc+l8I
k/tSGNzAubC8QuFQGJr7GVrNHyWRnpLz+Y9JPGfxe35e4PsPUpBfFBDEIyu4/90kmXDZRCwO
6m8ssLRivdzMBGGQyUGzTToElcIPNyymIoFOqGS+QEgNrQhwMTrRilNcCtWD99OHoH2u5bsA
Zq1jPstQe3RvvGXgHxnfg0vD+OjzPgVpLOwcnkEkPKEBOdgckQOPYwJlBYjBYbzGpTXW9yMC
ARJE6wBe8yz20dskavNIBkC28jILSbirHczlWA7jdJZxvH4u5zu4169yrHoSHd9TWOXh3neo
VRac3Mo1dTxJxrKIFGiPFoRBJAct3Ag7Gpwk+M0NmgzkFZ8TbWDatIRyEY4VaLXgo3s2hURk
NEJWm+sszRajWJb+w6cO7bRUqw9BfW8+R7abtYEQEd4j7wKxITqnP/65jO+MopDySMa1bMw4
1mVp7EGYDS3v816IOsfSbEgIfP7NEJHdrLE9luP6Kv6XjwMBEULfrylYrqpgvghDt/+Fgjw0
9NeS/C6N7tE75mp5jLWeiTqwliEjFor1+XSmXtuPsQy3o+s5bzbl3P94vE3kGENikNu5fmZl
ItI4EoRBJAcF61lNsxGBRQ1+yz516VJTELJQHcHqFXNmcGxyv+RGh4wsV5YhOAmVAQIL4gSm
kuBDw7iFgggI2eKM73iNflxzYCUf/5UheEzjb20Ojh1YwZoKt4x5Oe/fRWIyg9eAVKd/s8qr
Ig8E2Z3C/+ldhdAPPtB6OcfzkxLU6g5xjMwmkuXduG6FmYeQpANueHAZy4qhwRjYas5SijiD
hRwnyGR0cZnyhFeaIMvYHZybqL7crlslCLVBDpoJXzPnFzstZ8EUhL4KVi3cYEESUDMDsQh/
1oZXdXyZxAs+zdBg38DjF7LPF5f47rvR683RYxZCrf++JT43nsI02rHmgjEn8dyvR5/FOIFL
444U0sIxlCWwDzRaLc3gtLulGmMoUeAuh1iKMKuQv9ZCiddC7QACOKpnh+5DuFfQ7kNbH6cl
9W5tu2UoQvA9n8p3Po+9Yc4tzmcKG9HLGPYF+ObyHCDHPrYgtnAIgjDE5KARJ2O4EEIj9gtz
PuKrGvg/C0NHEIwCFARUpL+8MWn/Y6kvrdeoDdMGWDF24iOEaQQ83hUI1i0UxvezbFcIYEuJ
c2dZd8ZFghIwKoMwGK8HQvQdwTEIUEh4cKdlx6AUrGcl2cEaDyAle1JZgj47nH0GwQ5uHUjB
urKX6yk0wf7RCPsf7guC7t+xnu5Dqzimd4q+593HPm/FLnLeyo6xAavDVJLza6w4S1h3L9cE
5dz1fA23tdASJUu+INQYOWh0we1SLoQ/UZcIg4BObnzYmOHKBg0dKu62m4Lr+oId+Oj7MBaA
4PqCfOifzSEHWzMED+8mFKc/hZvFfApBH0XvQeh/I4MceEIBSwGSHTxlxfn7h0J49r872lKr
KdZAWDeQdQmWl7fMZW4LMz9pbDbO3tdKMvhqxvsbSaZBrJcFxzEfYAVA4Pn2JOFxNe0rOK7u
rmBs47fg+uczES0MFCayPAmCyMGgAwvkOdRyyAdcGMzNeSmFycfMWRGwIT9t0pBVin1zhF+P
kSW+eyQF9fej41/gYxyLcAQFmfaIaECQgcb04+jz3RR08oTzoQTStSLwdLK53PPGdXAOr/uj
aCyKGDQWdgruewysS7CofT4aqxgPiCVApi1kCZvA8X2zpa5JSyocL5hPSHWKLEcIvF9sykQk
CCIHQwz4Nq6z0v7IglBt+I0PQuVsjj/kEYdG+mpLXVakNesd3pWnKyJfHhDiN1l21rU9rGem
ImBUxjlbuV5AaIpjBeBy8wfrGTgc11YYjEq/WWMGrh+wnOxF4R+pUhH3sJqEFGMPBeNWlDiX
xmF9rze+Ung593E9x0VoIYjnG9as/TiO7stRgPR2TXBbg4UBVjXEDC3L+K7GnSCIHAwasOBA
a3iWuXiDRk/XKtTe+PMbJDbsU8y5Gs2nkAk/dZjZZUXoHeN6EZLHBsJ+mM50IoWSyebcacI1
YFcqDd4MzuUzr8DV5rnot7qtZ5xAlmBTGMSxhViqCRTwkF3mIPbFsyQzGznW1pdxLqG+4YXw
UwPFgy+s92LG5zGel1NxMSEgB7Ckncjns0kuoe1fUiZBCdM3Y327kPvvDb2MQ0EQRA4GBRAM
fs7Fymc1GabNUBgiotBJ4RNZjJDm9CoKc2dq0ywbo3ME2+E5x3cgacD7XcF7EKrh4gDXivej
e3QD71NLjf5/rP1fNBfLMpHH36Ggh/iHD8wVI+sKBDYpRRof75EYfstckO+pFOoxpn+WMwa8
m+1efD6F65JPYXtdRC57mxMFtjZz9V8+Jmnx1gKlDxcEkYMhg18ETzOXUeEWS0uwK32pMBTE
IATcOmDRQpA8cuFDq5cXaCsUoyvjGAIu4VudlZJ0DPsSAtK/m0s5CgHoJJIGuE2E7hRnBMLL
YPV/KTckCHs78//N5HgZyWvu4thZZMUBpVnjTz7djbGvWYmxiQBzWIxO5hiBW9kwvneCZadU
fo8k4HgST8SnTOJ55lrPGL3e0te2cm2bR4JykRXH7YgYCILIwZDAayawSMF9AybRBYO82QtC
OYB2Gik5oam7mWM2NL2LIKQYV+K9rRnEwffdWxROIPCcw/fWsY9vp8AUB2MOxXplESHYn2QA
7UCu96/xmiGwvUuS2V2m4K9x1BjEwBO9uXx9ezB+8Ii4gMNIDPD8Xxz3EPpXcuyErj+wmr1K
QnEy5wqKmZ1u2Vm/sq7LX9PZXMfwOydaWmRQ65ggiBwMObxloI2b7Fkmlw2hdjd8jM1zuWn/
tzmNNjbZpeqeIvjChZ9kvActKSwEb2T0LzTssMocS0HoT+aKenXzvaHWqHvBDsQQMRFT+Ah3
IV8kDQTyTv6/zhyhUWhsFIJxgixCp1HAfyYQ+H3yAyMxOJuEeXsK/j/ifhhayvB8ublAYaQX
hSVtLcdZKRegUOBHkTXULUDgMqz0vqCZxqYgiBzU1CKKBRR+3DCNLpHmQqjxDd+4KSOTDFxE
kFUG2rsrrTj3fDOPYWQcyqoxABxizvXmkaivvHDSboNXpTqrcrBlHJtKQoP6AwdRwALeJjG8
n897K5anda2xlQf+/oIoXs59bWzwmRlW7Prj3YQOs9SSdh4fT+Y8OT0iFCjWeGsG8ezOIaI+
rgDkAe5DSKwAK8Gh0bVobAqCyEFN4ftcQC9XVwh1JAjATQTZQY7m2EWl2itIcLuaWDjaka/h
Ez2KQgn6aDdzmvZjeNwLJsMCAaZWhDusR8eZc49CXnn4eA+31NUDpHC5lY4dEJpPeYAx9KWk
fc/SzEGLSCjx+itWnKIbWn8Epx/MudFBoR+Z0kZyDGI9OSGYLwUrz4UohLcWHELijT1XFnpB
EDmoWbSZ05A8wI23xZShSKgPQQDYxM0WYxduADD1wyXmvCbefP8PBZuxlqZT3JmEAP30MNvT
nO/dNXAfQWBg7YALCIKg9yPJ8YQAcSbIWrUm477K0ikYhfvFFMTHck/z60AryfFB0biBkI8g
dVgOjoyIw8WcN9O4tsypcJz5zyKRwk+S9oo5a8GKYMwr4FgQRA5qDlhAb+QCeaWlmhctWEI9
IPTRXcXNG1VFoRnf25ym7gGrXMtX74QJQshrFLZhPUAWlGfYOobgHhVKrD8IJIZf92y+3kLC
B20u8r0/lXP/VIhMcz8klogBQBruqTzWGSkIvIvdbM6JLcG5HiUpPcTSSsQ+HmGWOavBu2WO
s/C6Wnk+nPc+Xo8yEQmCyEHNL6xXcEM+34pNpoJQT8Jw+BruJ3ChQREhb0W42NJiXs0wxiEQ
HU7B+00bWgtKnGYUbh3Q4MJdaAavEbEC9/IevRhdc0uZ915oTqWArzPQZs7ChGJ8R1Eg3yEY
RxgvKHg205z1IHRHQ/E+xB1MyhhbcE9sr+B6jGTiC+ayHr1hxXULZOUSBJGDmhaqoNVAphdo
Vm9VlwgNAmjj4ErzEgUGaAThjoJUgSuaqB86IwFoKIgR3IL2NKfN/aq5qsQ78z1YMxBEjABN
ZEVaa73nhBeEcA8DMYBGfpoV+/H7gn2+UJkfS7BCbSB5WBbNCaQn3Y/74qp+EGC4NP3WnDsc
MhHBIl8LWb4EQRA56BVYqOBDiRLwF2sTFhoQ0EIjV/kL5rSJT3KzDusiNJswVa21o5AjwMNd
A8XHJpvT0B5Jwa2TQhnI2Z2W1hso5zcEIR4T/hH7177mLAZh8TDE0yDD0Bcsjbmx4P19cuZE
Vz+uCYTkx+Ysl2u4ry4dwHkoCILIQdWBbA7IwrDABt8HWRAGUyB+0tLKo3A/ODrYuCWEVi4M
hUCAM9yCdqVwBEKwuzn3DKQUvY/9jPiH5y3N5V4o475JmBJ6G4MgmdDKo5ZHWO0b6UlR6A9u
a2Ot2M8fbj5wK4otBAga3oWCfaXXAWsBMiIhxgeujAsz9lWNY0EQOah5LOTm/bi6QmgCQcLn
Jl/Ksf8oifHV6qKKyRYEoW+Y077CSgDN7XC+j6DPh0kKYBl4xYotBHKtEPo7n329AD+uoO1H
RWwovLwbHWJY1lJY39uK3QkRdwDF2LSIHKyy1AWp3LkASxkKp803FyszL/gtKR4EQeSgrjCL
C+MCay4fbKE5hdmQIGDzP56bOWIRoEG81Ir9kptR2MqLR4AQ9lk+R3DnXHNxStDGQlMLjSzc
thDM+UfLzgwV/oaEJaGScQmg8jWCi+EaeD/JfUg4kZEM2vpdg2N4/xHO8QOife55PqKuQXuO
IqE3YPyfas5tEfMgK55JY10QRA7qatHF4goN343qDqFJCIJFgsPVFGqR+nAlhYjf9CIoN/Ka
EP9fuFzsRQEIAcSoTDyV68ZjSfuHuRoJsAysL7P/JSwJlRKDNnPFDaeSgILU/zkSxB+hgB4L
+3/l45To/BiviDvax4otEIUy5scIkmNkQDuOv3eDVR7ALAiCyEFNAZv9/lzgOk3aPKF5BRDE
IcCKdoQ5DSBSbF5plbkWNApxgtAzjUKYz2LmC5BB8HrIXNpjaF03Wc+sQqXImCBUOiankLgf
R/J+IsnBX5L27YgcwK3oJY7fML7AWwhAAkZbGmyM8Xo9CW93hfME5OQq/gauaYlulyCIHNQ7
sNlfzkXzQW3kQpMLIAC0iO1Je4ICMAJnUfPj1kj4rdd50pLxn3Fsez6fQKEKmV0O4zEIPsvN
pX18mX3SVUZfCkI1AAH/MRJVPJ5paSD7AyT0O5KkGgV8xLjcbM4FrjMYlyAUO0V7f4Hf3VTG
vClYGluANeFkrhdhIg8p2ARB5KAuhQO/cF3ABVepSwWheI5A+JjHOfJTc1aEi60xMnnF7kKX
8BHwwcRwF/LuEStNbhLC0OJjPv6Mc9O7/4CwwpqwZyTcb+AjUucu5nMQWlgH28y5xnX2Yc74
on1YF2BBQxXm50zZtARB5KBBgEUT5lAEdS3VUBCEHgRhBQXj6ywNVoYrzd11/J+GmavOejDX
AAR3TqKg8ySJELSra6w4dkBBxMJQoZN7FCxaPsjYu//AkrUlaV/jfPXj802O6dZg/OI7qKnx
obnMRZUCWbngZjjbnLXgbCt2w+vWrRIEkYN6F3x+SMFnoTZ8QShCHIT8XXOpTjFXkAUFudK/
Z6XdEAZ7PucJ7tB07kzB6lgKNp9ScILwf7u5RATdOcKN4geEwRq/UywtkgcB/hpL3dde4OMM
Cub+O++TyO4SnRPff4Pnagl+Z5kVVwkv57rgQnSTOYvDs+aqKS+NPiNiIAgiB3Uv+Mzlonm+
hoAg5M6TEBAoDjUXmIs4HbgSnBsIGrWQ0SjUYqKw224UZA6hEIW867AWwkXoPSvPVUhkQBho
oHAeXHUu474EbOP4bOfrv5lTZh1u2ckBDrdUe+/dAvH9kyscy3FsQSuVAtN5fYsiIqD5IQgi
Bw0BBG7BXxKBXb/hsWFa5AShV2yzNFj5Es4hWBIWWO/pOwcSmL+IHZpB4QoCzd4UuuCS8X1z
ms7V1jOrkOa9MJRo5RxCxjxUMPZxLv9jaSpSjNNNJAfnWHFxM7gHwUKAuIMvW7GL7Errm0bf
z4lLObefpmKgmbKWCYLIQZMBxGBy0k4wZ7JtMZlEBaESgAiErkbQyH/NUk18tYTurMxCI/g4
kQTgRDYQAcQKvEMBCXUb/mI93YXCaxMxEIYCfgxiDD9uLuYFpOCKYKzCOrdrNE5RaRtZtGaS
HHhLATLtwXIwLvg8fuPWPhKD0FqAjEfXWmXBy4IgiBzUBbCIQusJq8EPknaXOS2iBARBqExw
CAEB5etJ+4k57ef9bB1VJAj+HN7it5+5mAHEDow0Z72AYLUxac9Y765Cmu9CrcyjQ0gMHiPZ
DvExxzoEdF/DAON+OI8b9zTgXe7lrf0c55hjZ5jLUgaSnWUt0PwRBJGDhsE2LmrwN36fwoQW
OUHoO7zAACsCYg8Qi3AtBYsLrf/FkEDooVmFq9Acc/EDk825V0BwuYJk4G2T5U+ov7njMwpt
yflMuzmt/dSAHMBCB+sYAuzD4ma7kjTs3o9rQq2EX5kLPkZ2ststjV8QBEHkoCGBhRhuRDDJ
Hm+pNkQEQRD6Pqda2HwswiPm3CF+kbQvkISvjwSiUvMOAg98rxFEfDTJwBpzWlScG/nae6uz
oHkt1Irw7wGSuxfJQBibg33oNRLfKdHY/gPJgc9OBHSRIBzOeQLLHawFc0kybqvguvxzXwj0
JJ77vIw5KwiCyEFDAosztJr3mGoaCEI1CUIIaPV9LMKvKOCDkK/IIQZeaDqIwtEsEoLXKPis
4nwNK69Wek2CMNjEIExw4TXysAAgDWhbRALghvdTkoCOaC7dQyIwMRDYUWMEwcew0M00Vy0Z
pOF4zpXe6g2E2YimkHjsx++rmJkgCE1FDpDhYby5zAuCIAyscATBHjEBPzZXWOwWcznbt1Ag
QQDxUZyT4/k9EAjkUoerEDKwdOYINIJQ6+jmOEe2n9PMZRN6gEJ9WLEY+DMfp2SQ3D+aS0W6
Q0AOEMD8GM+FtpIE3FvDt5VJnP/LnLXgXnOWB2UiEgShqcgBNCnzuAh25CyUgiD0nxSE8wpz
7RRzWlOkPZ3B43uYK0AGFwZYGBBIfHeJ+SjXBqGegLEKawGSXkwKhHcQ3mNIir0/v5E4wKIw
05y/f1dwrnf5OM3SQHu8D2vBEeZSCm+y4uxbLRnzZ1jweyAnPosR4nbatScKgtBM5MALFddS
GFmo2y0IAzrXPBlHvnX4Qo+joASLwRhLYwjC4mnlCFuCUE84isQAgvfZwRj+MYnyREsVVbCQ
vW7Ouj3ZirNtYa4gq97BkRC/Pnrd23zZRuJxDX8fVoyLrbpZxQRBEDmoC/h8zTCdXqGFUBAG
DMieAo0kXCNgIYB1YCwFm9+Zc4V4K2nfJFkHUT/dyqtQLAj1Bi/4v2fFsTYvmKvHAbe6G4N9
6k8kB0dGc2IG59bmfu6DSIe6iPPyfEstFz7FtyAIQtOQAwCVUaFluTtYKAVB6B15RBoCxWf5
iCJksBKcyfc2mHOTaLfiQGIP+FojpuASEga4+mVlNBKEepgfQOiy4/E6H8dFx98gYT6DBNmf
A1mMkKL08+asCphbl5IwrLR8K0HW9YTzB2S9zZxbLeIUEAe0KXhfxEAQhKYgB2GmBiyKx3NB
lMAhCP0jBhA0DuSc2pNCDLSgqDMArSS0on+LhI8sQDMKqwG0pD83l9HIuxkVRBKEOgHGJwJ5
4UL07Wjcf0AScAzHts9eBLL8srnCgf4cLZxDr5oLPvZzyxdHm2u9p+/15xrBR7gQfSdp881Z
8M7PIRiaY4IgNAU58EVbUBAG7gt/sPJ9mwVBSAEBY19zVVIhAO1OMoCqxE+bS7/4Eufc+gyC
XkrAx3uwLLyStId4vgWcswUJLUIdwFfsRorSMRE5QPAxrGjjMwj3vziPwsrHmC8++HgPkm0Q
gkf4+Ur2P5z3+qQdZi624EqT+54gCE1ODvwCfBFf/0S3WBCK5oZZvmVggjmXoW+Z02ICnRR0
kJL0fj4WSpzfW+5KCfheYwpSgYDla5J2mTn3pAspFHWXuFZBGOp5hPGJ4nyr+Ri+jznzdwro
rZFw7p9/LSAHwEY+wlpwdR+uB2TlR+ZSp47ifFISDkEQRA64SMIkC5/Oh7kQ91YURhCaQaAJ
BQkvbGOuHGLOMoBiS5N4HAIPYgEQCLncXNrRrjLmXqVz1XheFE77vbnMLvfzt6+14loHgjCU
ZMDXIVjLx63m3Ic+yZkb7/FxhqU1BHAexNwge9d+0ecRg/MDzsFyCbH/HAjIYkutBbA8LBOx
FgRB5CAFNCcw9c7iawVdCc0Or6kfzrmxiznrwAHmsqFA0/gshQoUZVpjxa5CNoCChicuK9gQ
tAmXpTAWQRCGcu5MpPC9U9K+GLw3qgTpfYGPh1ha9KyFRGET52I4BzD23zfnvjfVynMFwm/5
ugWYr8iC5K1uykQkCILIAQENylXm/JfXR4u1IDQiehPaEZB4atK+Yq7QEl6v4/yA4P0wiUFX
H85dLeErxEIKRj/ktd1C4arDVClZGBp8SiKwh6UuPIg3OIx7TVaMDeJoYPnak3POW8FGR6Qi
/M6TFPB3KmMugrD80lyVZMyRi6zYQr5N80QQhGYmB2FKOQgWa7lYCkIjE4Is4QLHv5S0Xc2l
UYQrxCwKNciIApcDaOZhHViRc748wX0wBQ0frIyYIaRzRK2S65L2G5IYkQRhMOeaL1SGYmRI
MXoUiQGwMRiLoQAPQf1Vfg5C/G/NKa88QV+e8VtvkDjsWuJ6QApgHUcmIrj9IfNXVoVxzQ1B
EJqaHPhFEP7KSFuKtG3rdWuFBoYXRECI4YKwFwUWZCrxbkLwa4b2Em4Gj5rLpf6R1U/8zXrO
6TvNBSzfbM76cTqFtRYNA2EQ95c/cezB5Q1aeVjfJlFI7yChjbGc5ADB/V+31GIAkn6j9bQG
/J0Cf158j0//iznfbs5q0aG5IAiCyEE2pnCRRsGYxbqtQh2jlCsPNI7IJuSLj8E/+TgSAbg+
wDoAq9lfk/Z8CZIc/0atahlxXXB9gpUDhZyu4n+DkPZKQJJq+T8IjYF1nGOIFUBxzV+byyw0
zZzm/tQMgvA4x+1YEgOc42HuVVnjFUR+R5KPcFzD4gCrOJRfqzn3l9XB/BUEQeRgSNFmTotz
YRkCliDUE0EYQWEA7SASAp9VCBr0dnMZUFZScChn3Nfb3NhG4WgpHyEYwZKAfO6bNFyEQQAI
KlL6os7Hixx3IKmXcP8BQbjI0mJjLSSwKBq4D49lVQ0P0Z2zt93M5yD+Pp5Oe5wgCCIHJQCt
zEwKRo9o0RTqHL7SKTSRrSQE8HX22U1AAuB/j0qrH0eEoKWBxz/6ZBWFrWsplB1NgtCuYSMM
IFH38xKk9BwK+8s4Hs+lUH8OhXe4BC0JSO0yK9by91Yc0L93grmgZ2Q7us9c/M3qYH1Qem5B
EEQOSiyi0NbAr/N8S7NGCEKtCRdWQiiAKwEKkM2gMIDxDOsALAPwQb6ZggiqqK7IEQx6K3JW
74QpDPT8LvsDwtgdJE8XWe+VmQUJ+L7yN4qQIWh/sZVOGxqOpYdJAhD7cjvHW7elRTdhSfgt
ny/p456G6/ueuZoHSG36nxnkV8RAEASRgxLwqUvh+/mbXgQwQRgqIHB4WyQITCUZmMJHZBSC
FQzaQaQW/SOfr7HyAuzrIYagmoIeBCZoaY+nwAZydaWVlx9eaD7EvvvbOC8xbv6jzHO8wsd/
s2LtfTcFepAH1Bz49xLkoFCCuCChwPVUDmB8f9+UXEMQBJGDioUELPTQrP7Ieq/gKghDJZT4
jR+EAFpupBeFhhAWg+GWFiBbbj2zCjWyq1B/5z8EsEdIpP7HnAvWhVa51lZo/Dk411ymIaS6
PopzbCnHDAh6Rxnn+ZRzFcI7EgN0BmNxC88Hi8SHFV4blAJXmLN+QxmA+KLnrGd6VEEQBJGD
XhbU6VxEUYlyhRZRYZAFU7PS2XJaKPwjzehZ5jTcIAK+ABmynaDeALSRpQoWaUyX7g/0Xbu5
fPPo5/utOHDTtDY0PS4lMYBgf2wg1G8gYd+7THIAwv5PPp9haRrRcGytyhlz8ZrhYwcQN4MY
GqQgjoPs5SIrCILIQYX4NoWtO3QbhRoRVlGgaH9z1oH9KHRMJSHwcQOVZBUSyu9/aG1RYRaB
3Mghf4y5wO3fUdgSQWheHMXH+wJi0Ja0yXy+XZnn8YXNkD64tUISGxMDrBU/4XVgTTjc0sKE
/jMar4IgiBxUAFgN4GcMTdCSEouxIAyUQIoNHO4ACE78grkMJiAEO/IzvgDZxUl7z+QLP9AI
YxFWU2nw30mbQwFsrbqoabHcnCvQZr6Gi9EN5pRLKEj2eAXnwvjaxVxhwb4qETAeYS2YxN8/
z9L0pIIgCCIHfQBMsfDPXsdFXrEGQn+FykLO6/g9kAGY/3cyF4B4GOfQJm7uaNBe+8ql5f6m
UB3C5gEN7F4UwkAS3jBnuZlv8uNu5Pm7I19viu6vn4uXm3MrOs7S1NeLK9xDcK6zg/MXyrg+
AMHPcIO9jOsGrAWnmYqZCYIgctBvUgCz7pnmUtHBciBtrFBNoTLrPe8qhI19Bp8PIzmFf3ul
BcgkBAye0NjO574uwufMpYjsUPc03Pw9koL3eOtZ++IZztepbPcE42BHkkho8DeXOT8LFV4f
LN2XkpTArQmBxz4VqiAIgshBP9BNgoCF/DUu/tIACtUUJiEo7EASgBzoPm4AAsdYChi3mUtZ
+J5lFyCT8F9buJvC4YG8dweYywyjjEaNgREkfxeStAOIOXnC0oD0tZbWKECw+kWBYL6npRWI
2626rj1YMxADcwFJCZQIV5uLjzHtX4IgiBxUByeZ09z+f7p1Qh8JQLwZgxCMSdqJ5tyBfCVi
EIF3zAW0dlDAXGul85QLtYMwk1QH21MUHGHxuYEkQdrb+p3HCAqGWxASADxvzm3oUHOZiQ6x
4ni0P5EcbLTiYnlISTrKnItqez/mcYv1dFnDWGvjWnJUQArMFF8gCILIQVUA0yw0RHeZM8lK
IBMq3bBD3+SjKVz4QGIEByJX+T0UNEAGynFb0xisbYIQAi4dp/PeQhj8g7kaKUqFXH/3dTSJ
wWGR4P1x0uZZWojM39eXzFn6Zkbn+ou5xBZYA8Zams2o0nVmWLDGYF2BG9vJ5tyVsorzaawJ
giByUAUsolCHCpRe86NFVihXOAS5/IY5l6GJFARGURhAyssXk/aBOeuAFxDgsrBNY6yhyCLQ
bs7tBJpkBCz/jooHEYT6wWRz7n7rrFgjP41Ef4QVa+dhOUJg+nFcC3za0M1sI9k6+7jO+Pgk
kALExaGGwmz+jqxTgiCIHFR5M/cVJLHo3xIs6iIGQqlxAx9fZBWayQY3g63mKpBCU/i/5txL
1pfYvLWpNx5Z9LEhuO9Xcwws4Ri5xoqzxwi1QeZw36YEQj6wKhD2Z3Feg/Qdxvn9/eh+47mv
UXAA9xEom26jEN9uaTrRQpnXFsYboU7BD825vf7CehYz014lCILIQZU3CPhuQkO0WMRAyNlw
sdHvyY0fRBIxBLAMwJUArgY/NldNG24Eneq+piYIIVZRuIQVAS6L95qzImiMDC0h8PfKB/Xi
nixP2n8Ec/8dfu5X5tyMgBu4T6zPODfqGSCjEWpfvE4yuB+PLerj9WLd+Zmlxcy+bs6S0aK9
ShAEkYOB28hPMJcP+hfcyKWFEYBhJAEgA4fwEQLCJG7Sl1EAeJPjZVMJAURobngrArKg/dac
6xn81leoa4ZkzffzE+4/0MAfxtfIHAYLgrce+Mc9zFkAFgbHfBzAtuCcuJ+PmauejexFcCE8
3py1qMUqCxL21gwQEaQ5RjKDG0UqBUEQORh4wIcTGqNuPkqYa1y0RMJBfJ+hQURmkQnmMpLM
tzS9KIS7l5N2U9Je4ee7M85fsOysIoKA8QD3IgSjw3oAdyPEovh89Bovg4ftzQWKn2XO6gfB
+5vmXAX3DgjABj6+zc+E1gJo9B8yV19gWXDvEJB+Ks/xdMY6UShjbcK5TyOBfJhrUmcZ5xEE
QRA56CNGBAv2EdwQzjdpZBodhYznIIewCqDo3cyk7W7OMrCNQtxyCnGVZBUqt7Kp0JzjDwLm
NyiMIgsOXFCQInNFRDKFgQPm+jlc8w/l/IYwj+DxccHnXqJyAJaD/SNygH0ElsWDrDiOBOdc
3Mv6ExMDpDfu4jlBCM5I2t+tZ4VjQRAEkYMBwrZgQYa1AGbg23WrmgIj2BA0+FVz7gQ7ciwg
dgBaOsQNwG3ofSsO+JPAL1QDGEv/ogCJdcfXRcDYmy8lxaAAAj/SCm+21JX0Ge4NrcHnQBhe
5HoxJTrHB1wnQDQQT9DX5AI+ExHO3841CemOv2OyQAqCIHIwqMBiewUFw5tNWWPqWdAq9HIM
my7M8j7N6DQKBhD8oQl80lyQ4aqc84sUCNVee/y4wrpzLsceCmshcPliU4XbaqwLcZ+HgFAP
l5/pQR9D2H+ea0RYj+BBkoPW6BzncS15gKSir+uWtxZcxd9EooNHRAwEQRA5GPzN+UguxrAa
PKtFuK4FgCwBHps+3AU+b04T5wuQvRAQgZURIcgaAxoTwkCtQRYIh7AiIKYFGuhHOUa/q/FX
MUYEgnohhyj495ZzbTicZKyLx7Av7ByQgyd4zlkBaZhLMtfJe1bo4/3HOoUCZgg4hkuTD3iW
UqI+x56Z6tYIQt2SA+BbfLyUm4JKzdevgDWC4+xL5vy3sYmPDzZyEEDUHPizubzlnRkEQxCG
iuB6N8cVFFQRzHqBOV/2MBZB6B1h5iCs7Ug1fGPGnC9QMYD3j7HUUuNTkc6w1N0I1kVkskPx
sf9rrrYJ4g/gmtTXmABYIVAnAWlJEdcAC8TbwVgQ6lPW2apuEIT6IgehJgZWA192flUkaAq1
d79iLRpeQ7MHVyEEkyM7yMFJ+5TvbyAhuM3Kqx6qey8MNcH18MGsfzAXjwDB86eBgNtsFs54
HZjG1ytz+gHHkG4YWcXaeAxxBQszPvsK+xTnhHsp3AwRZ7QmaV+x4qDi60nWUMxsNQX7uyy7
1kHe/yhQkXG0udiCl3iND1q2a6RQX+hSFwhC/ZGDcNG9lQv8ebo9dSEc+I0TsQMHJu3fzVkH
pvI4NHiIG3mURGBlBQKUiIFQi4DQeYo5X3cQg5nmXFlWZcyLZsHZnOc+WDeLQEDxg/SkSEcK
16yTzPnzh4J8mDUKxGEiFQ0gB3DpgXURFpyxfH8E30P/n0jBvqMPaxgICNKnnsP/cEYJxYXW
JUEQRA4GCVhwYWqG//llVr7WRxh8DOMjfHFhFYDWbj9u4sNICLDBIoBwacZm7X2PtckK9UqK
N1MQhSLjDpLeS6jcaJZxHQrVcP+BlfCRjP+PNeE69g/66wRL05OCUPg0pDGpepjC+rSAeMGa
AHejL1rqbjSC5726j2sZXMXgIvYx1zRv0VSsmyAIIgdDvMlA8zyPi/ytujU1KRDBGrCXuaqi
MOGPpZD/Pjd3FI9azOd5RcjMlH1KqH+h2AOC5JcoIP+3OVeU061xrQj+/0ykUP9zczFEvtJw
Vl9h3YCVYEvUNy/zWBhXEMJ/LkxTirSyuyXtveBYd846k3Xt4f1rIymAGySsF0pVKwiCYLVl
OYDJGVaDo6w5/XdrbfP3KUYBn1nIEwLjpo7YgfvMaQs39bI5614KjQqMfaQ8hab7h+YCZxdR
ydFowqYnBlAE+Jz/l1jvll7v8/1GcAzPXyM5ODfjO89krE1PsuWtNVnrTJwlCdYOBJX/wFxs
w+EkeS3RObVmCYIgcjCEgCAKrQ2sBk+LGAwZRvMRZnb48O7B12PMmd+38B5B4/cHCkFdwaZq
vRAEQWhEMu0B7Tc02rCeIVAZPvDzrPEyGl1FYoC14DtlzPXNfIRQDmvDMgrsIE6wDsBtqNV6
1jI5ko8bA2G9xSqvMRBaFv7LnBUDio8wcFlBxoIgCDVCDvwCD0F0EjdTuZxUT2AplCmsI5/3
15K2pxVbBwD4UsOXF9o6+PputZ6ZH0QEhGZFPPYh4B5hrro7/OXhBoNg3b9YsUW0ngl0KMQP
D/oBygXEEyAO6U+WZvoZxffw2R34+W3B+nKaFccVeJzIxw0lCFm56yAUUD82lwlvJc+9QmuY
IAhCbZGDESQCEExhln6Am4kw8MQBPsBj+DiDG+bwYNNGQDGKz8E6gKBi7zIgf1xB6B1Y11Ak
7feWFk6DQIqEC8s4B4fVsUCKdaGNAj3IQDuFbzwexs8gKxHqBMCa8j7XE6wz+yZtSfDfX+bj
DH7fuwCdzfPDbemRPgjxIfmCBeKHPN8C61lbQRAEQagRcoANFNqk6/n6NpP2plrwObuHsY9B
BKApQzzHduZ8hqHNg4VgCzd7X4gMQNaONVbsMqR7IwiVAZrpOSQFx3CenUqBuV7nky88tpbC
9rE8fjmVDYhDQuYyWILPN2cxQUzGb0kO9gzOYyRNWG/gVuTrGYBoICYA7kg3Wd+syQUSlwss
dYH6ckDOtKYJgiDUIDkAzuPCfQs3TC3Y5W3O5fTRmdxwZ5EgTAre28JNeBH7fn0vm6wgCH2b
q0jXiWBbxCGg2NdD5ir6XmOpe149rnvv8xHBvHBFhLshMhEhUBma+bN4HLUg2s3Fkq0jOZho
xalL3ybRmGnOquD7rNvKi9eI3Sh9etWzeA6kxs6qpSAIgiDUGDnABoFCM5utuNqlUBqFHKLg
swuBBHzBXNCdJwToY2j0XjcX3Pdi0j4w5+OrQDxBGNi52sK5BveWNgrPM7ju3Wv1GWe1ikoG
WCChlb+Cgr2RBO1jTvEzisfwH33dAl/XwPfPUpKD8cH5l/VBWYI9BamWv0diAsXHndZ4AeGC
IAgNSw4QZ7AHhVgJqZXD9xdM55dxY4SbkHcnWknBA1o4+PUibWBnzjkEQRj4+Qohtp1z8w62
r5qzoNaLD7wXxJFm9FNzsUoQvh8M1pMO/rfDSIa88udPJAdh3QK8fyafT+vH9bTyN/fldZ1v
UjoJgiDUFTloJTnAJrk8WuQl8JfuC1986EQ2aOYQwAe/XfgB/44CyForXQyooD4XhEEVqD2g
DEGwrs9q9FdzmvcwNXAtZzQawf8AUuCzm0EhEVpAsLbDorA3yQAIw0t87wK+xvp1Gr+LgOVy
i1/G6+SR/C4spTeQFHRo2AmCINQHOWihMLuYAi0eN+k25Arv/rnPKgTN2nS+NiuuOQB/3izr
QDnCiiAIg4v1JPGYw9B4I+VpWFBsRA3PVU8CXiQ5yFq/VnE9wlo1mcL6RyQNWMce5R7wCveB
uyskW+gfVKb+NgnGKyRY7SaLqCAIQl2RAyzqXzFnbm4PFnIJq8WCACwr0KoheO8Ac764vhAZ
SADS8S03l1FovRVr7NSfglA/SgBo3xHIi4xGJ3O+Ixj3uTqYxyA0KIgG68Bo6xk74RUVM83F
EHTyfyI4GNYGuEPC0rnJKkvvit/6mTkXJQDWgmt5/rAasiAIglAH5AAbwPF8viASiJtNKAj/
NzY0xF/sZC714UncPLHJISvIq+a0iw9wA1ahOEFoHGWAJwgrqBR4mgLvNZa6GdXiWvmhuaDk
qZZmGgrxHh/3DI4ts7TyenfUF4Ve1kkAihNYGqBgCmtHeIgYCIIg1AE5CDc2pL07mcSgmX1C
vT8xcp6jmuiu5tyFQAg6KSQgsxBM809Y6VSjeQKHIAj1A2QUQ5Yf+M5fZE4jD1dCVCdfarXp
KoM4pxcoqPviZuF1buTjW9H3ylVuxAqUeUmbz74CmXrAerpRav0TBEGoA3IQLu6oUgkf2/Ym
7Gtsmjtzw4f262hzvrjDucEh1SgKBcFP9yPLjh2Qy5AgNC5GcN6DECxP2q/MxRPBarigQiXB
YABWg9ctrYrshXMoOa4zFwuA//N4P38HdQuQknQ2CcHF5pRLii0QBEGoc3KAjQ6BaOdbY1kN
ehPYp5AQnB5sotB8reXGD0IAN4JytGkiBoLQuAjXALjKQBuPIFtozGdZ6nrUUiNrAn7bpyf1
wHUu5FqPDERzzVlA+7KmgmSgiBriCZDIAnUL5lv9pH0VBEEQOSixgSDVHLRIsBostsbVgEPz
h3iBVr7ewZwr1SRuaNB6IX5gOTd5xQ4IgpAn5OMYrAgI/IX2/UlzsQg3WRrEWytr6UxzNQuu
5XoHQf5K61s2ulEkBXMDkoFzd5TRZ4IgCEIdkAPgGHOZKB7h63KzUtQDhpEAgBAcZcUmdk8I
EDiHokFvB4SgljZ2QRBqEz4tKAKVF5mLRfimpVaEoQYyqW3juncY1zxYh2+3vgUHw9LabmnA
8VEkBz4wO66nIAiCINQJOQiFXgTawuwMn/r5PFbri3spod1nFoKr0CHcxCZFhGAzN8frSvxX
H5QsCIJgvawTIALIZIbsPHDdgRXhMq4z3TZ0GY3gGtlmTsMPawFcijqCdbTctXYE94pfcX2F
UuUsSy0PLXWydwiCIIgclNjQ/IJ+JYXln1l9aclDgoDNr5X/A2n5kI51ON/bTOIDUvDHpL2b
tA+sPD9bWQ0EQSh3nYDQfS4Fabjv3EzCcLkNjRUBaySCpBETgXSmd0drWqGX7/rPTCHpgTXk
taT9p/VMWqG1UhAEoc7JgV/8oTmfzYV+WR31yzD2DTa87yft6+b8YD1g7l7LzdBXJt4cbWBy
GRIEodprqner+W7S/kqSgLUVGnxfXXkwMYLExAdKl7vu+c+ckLTb+Pxb5mIrurR+CoIgNCY5
gGB9prkg5BtqbIO1jI0HmxzSi+5mxbED8Jt9mwTgKXOp+8qpXqqNTRCEasIXCvOC8xI2aN3h
sonqylmxCAMlaMfX05urZHgdsBb83Fy81ktWnNVI7paCIAgNSg4QQIdUdBdx0R9KTVBLtIkB
yJ0NFyEU8pnGTfVAcxYC5O9eyYYiP5UWIhMEQRhIkhACfv4vmrMe/MWcMuZ6SzMaDeb1ZFU5
Dt+baM7CAcURrK1tllZWDkmGIAiC0GDkAKlLL6NwvaSGNlM8InYArkKHWVqReII56wAC6lBz
4L2kvW99S8MnCIIwmIBQ/RzX3QsofB9k2ek/h2Lt9e5QUMIs4uMNbOtNlgJBEIS6JwexW05L
xmYA31EE7KKmQVf0+cHeNLen8I/sQgjeO4QbFWIFkCIPGjcEwSHNqjJhCIJQb/Brq/f9f8tc
ytOXzcV9/dJSP/5K12JkEDrAKq9PE37WF3Ibk7RXzFmVl2Rcv0iCIAhCnZIDo+APd6HNwabh
F3mk2TvZXKzBE4NEAOINC/6se5urrzCNDdeKuAFkFFqetKVWeeVOQRCEWoZPBAGLAVwlF1AY
n2c9qyuXg2+bK+yIdb7S+jSjk3aeOSvyVnMWW1gOunshOYIgCEKdkQMs4Ag2nk+BG36uoT/+
PD5eb4Pjp+9zZO+ftG+YsxDAr3Us/x9iBlCUB0XIPkzap+ZciUJiocwYgiA0CpBEod2cdn5f
CuR/IVG4usJzbR88r8SyujMJBbLVrQzIiXG9lpVWEAShgciBB4gBgnd3CEgANPbwdYW7zgMD
KHRD8P9s0iabyywEzdYkSwuQ3WsuduDJgEDkEQsTMRAEoUEQrmVdFMgPTdqNSfuBuSQM53Gt
rHR9LufzSPSAugs+4BhxBVdEZEDEQBAEoQHJwYcBQXg/ON5GwtBmqXa+GmjheeEqFFoHQAhW
kwRAOwUf2zWmzEKCIAihMI7iaXcm7Q5z9REgsJebLGJzmZ+DcqjdXLKHx0gQfMCxrLOCIAgN
Tg72MqchQiDvpmBjwGYAE3aH9S34LQYIwBHmAon34zEQAlglFpMYgAx8ZKk2ShuRIAhCMbAm
worwJXOafQjxsLp+PxDgs9bMkcHzUmsqMiXdzefn83lonVCwsSAIQoOTAwjiCDAbQwEemwsK
2sCMfUsfzwk/VO8qhOwYSDl6GjeWDeayCmHDecp6WiVECARBEPLh10Yoc1Bd+fdJu99cEbKz
LXXBzFLqjCrxHtZtKIXgPvS0pdaCvN8XBEEQGpQc+MUeQWd78fVx5rJSrC+xGcQC/ER+f5+k
fcWc29BkXtddPB8qEq+w0n6qBW1CgiAIZQNrKuLDUBMBShfEaaGYWgcFfr+OflpiHUeaUySe
OJDn+Y2lqau1HguCIDQhOcAGsdacaxF8WeHis6iX7yAVHtyR4CqENHu7m9NKjeX3lyXtYXNu
Qq9YtquQLASCIAj9W7sBKHJgRdiYtJ+aS0N9sbk0zyE2RII+rLpzk/b/t3e2IXJdZRx/YGfY
bWaXbEy7yTaheWnCmhBLjQlpEdq039oqSrVYKGpasQiiIPlQRZDSL4J+qxSKUg3oF7WCLxhb
q2hb67Y09oNdmpa22aRku91NmmzYnc0sdxe8j/d/Os+enDP3zuxms5P5/+Awd+4997zfc87z
nLevS3Z45C2SbQvNEVxCCOlw4UCZTs1ByRagHZKwdl+FAd0hYwgNijtzIEHDoguJfwPBINSI
JcKRAULyOnrL8W2wYxdO22QJ74UOicxzt5zzrEiYyg38Sjx7Or3oRGruTc0fUR+7HY0Ez5zd
hyFIqBs6uvsd4doCQgihcAC0QdA9tH+GxsXtfKFapeskmyo0YIQHdwiZrkn4e2relPxDyNhR
ISS/07hcnbIiHdd2SI9YJzmJ3O+CYsMXtJICHfNQpzgJCAh5aVuO+JcnYOQJGUXyfBTmD5Id
EqkLlnUNgo4g7EW9rRtO6KnLhyRT6Dzo1d8UDAghpMOFA20sdG6p7hykc1L1gDEdFdB1AzqP
VUcLuo0Q8QgamtNSHzWQNuuIEHKlO8KhTmQXzMIyuO/c6Wrhu1yKlr3VDr6Ne1IgbCHc+z1e
nWjdLXv2JfDfHca4EOnU9xh/ajnxErn0oLAu3JsyeSWBfC97YWz2TIEjku0G9xyEAWVDal7E
9SMQCka8+FWk+JanhBBC2kA4sI2TNkC9uHc+0rhshh1Ft7p70hMGdI9rXeT2jFy6QM1CoeDy
Yzs9JSOc+R0Szc85rxyUcM/tVlJFPs+b55Z5qR+O10jw1F2uNko2La2KMrYe9wX3nb1p814V
78VQux96bi3lNNYeqW/leBHXFz33dIctHS3TUTLdrWUN0vIUwvEJpMck7FRy/FQN7jbT0bL2
N+L7sv5vkWyk7liLcXT+rEcncA5xnDP+jCDsA5Fw2XJWy/Er772Q+3pK74WAe5oeH0vNOVl8
3orvvqubLhj3r8f/LUjTfvh5E74NvfeuZFNqanBnO96fQvp0Q0EyBrd249r5tdHUiYL310BJ
8oEpmz2BcGteTKA8V+DWwdQ8hbDvRXk/Fohvv0mXKeNGUbSszhrho0/q68L0pGNdq3CfybO1
CM8JhLnmuaWn1B/AtT6/BeXc5cUp5MMM0m8T7Ljvxv2+GMnfGt4RxLXI9z7t1SknTb1hn50P
1GVFp9+V4da8aS8lUGeWItfznt8l3HPltYQ0qzURNlsf9hg3fAXBWhMOMeW47D0rwb1SpD0o
4Z0ery53z2uRtCmbME4bN2qyWLnoj8i5tuXtgF+2z3PB1DMar0HP/sVI/6iI0iEJ5F0efV49
6I84rkd5nI68kxRobwXlXLz86CvgRp5CqBk3WlEk1VBOe034XflZQD669nnK9Gl68J5ry5NA
OMaNXeWs+TZ6vPLjfueM0qZkwiNemFwd1w07F7z+kV8u500frd/75jW8Q2g/prww5zGPfnsf
yoD9htajD6G8ifT46MNN0CHRXScegCOCQLzraYQm0RnqN5EWo3HUdQTDqOS/6nUsK17DXzVu
D5jO0Qw6Vfa/NpaveQ3qNWhst0t9XuwsCshu42bVhL0CN11nx90b8DLT/Z6AmwNe47Xd2K94
HaARpJHef90UaFe4KyZskyaeAyYtrJsDxl7V+FkJNOoD3ntbPO2ehv990zly8dyNAueeXWMa
hO24HjP5XkHaz3phcOnjnoXsbEAhHzPpssG47fxxH9xFhFPtbTVlzmcK5U8r+mvxbkVWjsNX
UAjcRzl4WamgHN+2yvLq8BXIdzcSMYRGcWPE36FVnJ92RMzVFa7uc2f27EC94+qf0xBm1kTc
nA3cW2Oe6fUZpNnmAu/Neu/7bYuzM2aEoXOoH9+H/Z3m2ucG1LOn8PxG1KWn0HbsRLynvDq8
atoO8Z6F4hCKj9vy3E+/cxBkffsSUBCF3PDd24C0Pp6TP297Av1O41ef1Bfhr/HcX1OwvM0G
0kQahMdXjPl+7kCY7PNB07mVBv7ciDybQzkXL44b4O5sJM6xcPcFFHmzBdKmiPu+/TMopxtR
Zq8z5eciyu115vtwypnNeLfifVs2DsNIA/etveH5Y9+pGsFAjN8V7/lFozgSY2cs8v3YsIW+
sxNQfOhW0b9H+T5o4pyXzmeg+HJ1nU2DXSb8H00ZLRnJ9EigIdzXQgOyD2bOEx6aqcRFLh2+
XzAaCifYdEXer+V0Cm1DEfPP2p1HPBaMYNLVpPuS884UCmpXB3XANhW434W07zfpuRBIpzmk
3z5jrxv35wOaHYEA5OyUCmi+xZPyVcPwqmncdnhakQmjAe5FJT4oi/eNP41nM15lPWzifSpH
g57HWrgzF9GwO4FzoMHIgnjCs9PmjuJ6j9ES3wl7r0MD7NsfgDLCZzRy3ykERvC8ErE/apQX
I1IfvbEC/TYTTluB9uKZGx0ZRSNhDwE74CkcrGZbcSNHG+BWKHyjRnEgJhwHzL2XjfLB+fUQ
GoRh3NuFNGmUdwLlwIQ0N3q2G4oi8TRMrtz/1TRKb6B8zUl9ZES/g3+iTuvOKbNu5Ott8+27
MrbdU1S9huu7ZPGInq8QKLL+oWzqFH3nk0Zr12+EnaFAPS4dVk9f7vp+Od1YKNh3yXu+GgXd
/iWma7cX7yEWyWA63LYKw2jDdOgyKqf02X1OOBBUwFZjPhXpDIjkzyudMZ0i53YS6GzYIaIZ
I7GLuT8ekKD7AtK1r2noRUM6GOjYzJjOWG/gvvO3z7zbGwizc3PCdOp8aa3P82sm4OY44nZj
IK0nPA3GoHGj1wvnhLFj01S8uIjpsPrpOGg6sJukrokPaf7Fi7cvsWrn7D1ZPDrk4ubiN+mV
i9jIkv3v0tKNrox6eaHDYh/3wqgS90mpD0+7qUHaIdjrhe9ZqU8l2Ip7J6U+vOemVDlBwhf+
BnHfTScoGeHECTUl0+mdiQjG/rx0/7pZVnJ9j90K8+mrqBE5ehndyXP7cclfWxHK86TFsuLW
OKxDWd5o6pHj+Ga65NIpLV1NCNki8YXc4n0rc7J4AbkV1OcL+rXOfPt2ysd8wD13IOcQvtH/
QPtWQpu2L6KAqqJeO4402xtoMysR4VsigrgE6kU78lzx6tbJiJt+XVoxbrnR6QEjwI4at9x7
Kuzuh1A4KuHR/2qOf7G21NlzQn3suU0f380xlNstcunoezXQ7kgD5UfVS9dq4HlsumgVaXXQ
xOkOlItutEvHIvnj56O7P+CFXe/dCuWUjwrnNyAfj0HgPwEB4wOpjxTN4d4ufOdHjcInVF5d
uLaZa/e/6r27B3nhpjWOBMq93+ZPGoXKTpjnYX8/wvtfo2zx2Wby5ibYvQFhGDUd4O0owyMN
+iCVQP8l9k3a/oj+3gyFh+b/OSh1KgjLeyZ+bqRuJ/pZryINboZSZdJ849XA96f+Xm8ExGqk
XvJHMf2RnjWmv/q6qwjL8ORuI5G85Tk8jUidD9wPMYJIr0Ohs/O03Ttubri7tsKBu/9OoKHx
O9nu3hwajV64cwaVux0qtHNJa6bzJ/hg3Dz4t4zGahyaMBfOHiR+n+k4jntaTtfADJrwr4cf
ZRNHdcOd57DHEypcI+wENbcl7EkTBqdJrUl93txWE0e3ZsR1WN28+a0Ii8tPO5/tHWh+VZP5
DAr42YAQYef2xTS9V4qRgvaGjSa2GXdicUsiFZZvxwrSeXaWaxtfru9pb2ormOdup6aa+cbP
FnA/acHPpGDZX4ofElA2FbE7HqkfpgrWMaM59QvpLLYVaB+Wk3JAgI9xbeQbJ1cfZZPfielD
b7X9f3/BzZFl6HDZCnQq52PwK+uZwP1yxI59PmMajhoiXS4Q5vFAZS5GYGol7rWAeyG/xo1f
jcLq8uZs5OO1YZ6LuDPq5ct4xI8Ro8U82iAPxmXxAjHfXmhbyFY0mnn2uNsVIaQTG/ck57pZ
94oIbnnb5672c1JWqr2InXPiTh9f8J4nBcPp3i2y26NdXN7oDBJ3/6zEt2oOhbWZMpPk/Pff
LUfiWG7gVzniRmhHuEZ5ENs2upn+SpGtp4tuMy0F0j1pkAYxt0J970V9x1JOAq+GDzLvoKCk
yfea9bO8hM5tEbtJk/FvtNe9tBjuZtM4dr/oPvnJEvNeLkM5JYSQdmC5RxY7pT5OrnD+iFy6
PXIzfYtagfjYtjlpIf/KOXHJ63fl9YGKhKlR+jXqxIf+h/ytFYxjq99Ho7OIkgYd/1bKUzN2
y83090sr8PEkV9GH3orfyRWKd7IMYWlF8GKHnRBCCGmuA7kc7WeyxHeWWwBMLkPaXe5+xkr2
WZMVDHdTwmKJ3yohhBBCCCGkVeFgtc8rJIQQQgghhKyQcEDBgBBCCCGEEAoH/ye0+psQQggh
hBDSgcKBCgS6z/0PJNv66AkKCoQQQgghhHSmcKAcTs03JNszX09q+weTkhBCCCGEkM4TDvQk
3/txracg76dwQAghhBBCSOcIB/awhEOp2STZYR56Al+FyUgIIW2P1vMPpOZAaiZxbyA11dS8
nJqx1ExLNp2UU0kJIaTDhQOHHjv9GakfPa3chPs1JichhLQtQ6l5MjXdDeyogHBfaoaZXIQQ
QuFAtUSfQwOivJCaT0s2rUgXKI8yOQkhpG25HYKBCgAPp+Z8atbh2Z2SrTPTUeO9FA4IIYTC
gaLDyN/C9bHU/CQ1n0JjcTuFA0IIaUvcFKEB/H8uNUc9O/9GPb8vNRNMMkIIoXCgDccXJZuL
quj2pS+l5jgaC200jjA5CSGkbbkbv88HnukIQp9kU0o/ZFIRQgiFA11T8JBkQ85vpebZ1IxD
SPiFNJ6jSgghZPWiyp9tqdkh2fbUp7znOrJwOjUPoi0YFq4zI4SQjhUO3HCzLkK+C/d+DsFA
ICgInvWmZka4iwUhhLQbOvqrW1P/JTX/iggQXGdACCEdLhyUzfW9+NWFar8M2L1GeN4BIYS0
G24EwE0ZfUMuVe5Q2UMIIRQOFjUIeujZbbj+odRHDRTd81r3wK5QOCCEkLbDbUu9Fr8v49eN
AHMkmBBCKBx8hGsUDkm2I5Gii4+/Kdn8VN2dSLcy7cGze1LzIyYpIYS0DW69gW5PqoqeN839
W1PzBcmUP69I/UC0X6fmLJOOEEI6TzjQxuFaydYbOA7BhNhghAZCCCHtwS7Jzq/RNWQjuKdK
n69IdraBmF/lHjyjgEAIIR0mHCjfRaOh2qLHUvOiZKMIt0AI0PmpB1PzfQgHuygcEEJIW7EH
v3ZaqK5DeALXn03NRlz/KTV/E+5URAghHSMcuEXIOmpwR2q+hv+/lcVThp4219qg6P7YOuVI
F7UdZbISQkhboCMEt+L6Fa8d0FGEb6dmi2RKoRdS82Wp70pHCCGkA4QDh04nelSyre103+vH
TKOReMKE/j8N4WCncP9rQghpF/Rws/24PuY90/pd1xvM4f+fIRiIcJEyIYR0lHCglb5OJ3I7
FD0u2VShRpoiHWb+PIQDbWzGmbSEELLqWS/ZqIAqgT70Ov5l3H8X/yeZXIQQ0nnCgTYKOv/0
fvzXBWpHvAYjxGv47ZP67kWEEEJWN9XIfTcqvM20BzNMLkII6TzhQPlAsvMMdJvSX0k2ZSgP
PTnzQVyfZ7ISQkhboFNAdXRAp5DqjkQ/hhCggsGgZIuSdWRBpxy9xOQihJDOEw5UW3QBDcJP
pX4ITgw7mnCEyUkIIW2FTgF9KjWHJdt17kupmcAz3YFuyNTvnC5KCCEdKBzYuaZJQAAghBBy
dfEofnV3us0wrt4fg/DwhPC0ZEII6UjhQCgQEEJIx6Adfp1G9L3U/C7wXKeZ5m1IQQghpAOE
A0IIIVc/buqo/g43ECAIIYR0CP8DVdO8bQnYOnIAAAAASUVORK5CYII=)
Рис. 23. В то время как длина стрелок существенно не меняется, направление будет различным, потому что фотону требуется разное время для движения по разным траекториям. Ясно, что время прохождения пути S – A – P больше, чем время про-хождения пути S – G – P.
Чтобы нам легче было вычислить направление каждой стрелки, я нарисую график прямо под зеркалом (см. рис. 24). Под каждой точкой зеркала, откуда мог отразиться свет, я отмечу по вертикали, сколько времени понадобилось бы свету, если бы он двигался именно по этой траектории. Чем больше времени понадобится, тем выше будут точки на графике. Начнем слева. Сначала фотону требуется довольно много времени, чтобы пролететь по траектории, имеющей точку отражения в А, так что поставим точку довольно высоко на графике. По мере продвижения к середине зеркала фотону требуется все меньше времени, чтобы проделать свой путь, поэтому ставим каждую следующую точку ниже предыдущей. После того как мы пройдем через центр, время полета фотона по каждой следующей, последовательно взятой траектории опять начнет увеличиваться, поэтому мы будем ставить наши точки соответственно все выше и выше. Для наглядности соединим точки: они образуют симметричную изогнутую кривую, которая начинается наверху, опускается и снова поднимается наверх.