КЭД – странная теория света и вещества (Фейнман) - страница 59

>1), фотон, рассеянный в глубине стекла, например в точке Х>2, должен покинуть источник раньше, в момент времени Т>2.


– Этап 1: В определенный момент источник излучает фотон.

– Этап 2: Фотон летит от источника к одной из точек в стекле.

– Этап 3: Фотон рассеивается электроном в этой точке.

– Этап 4: Новый фотон летит к детектору.

Мы будем считать, что амплитуды для этапов 2 и 4 (фотон летит к точке в стекле и от нее) имеют длину, равную 1, и нулевой угол поворота, поскольку можно предположить, что свет не теряется и не рассеивается между стеклом и детектором. Амплитуда этапа 3 (рассеяния фотона электроном) является константой – S (сжатие и поворот на некоторую величину) – и одинакова всюду внутри стекла. (Эта величина, как я отмечал ранее, различна для разных веществ. Для стекла поворот S равен 90°.) Следовательно, из четырех стрелок, которые нужно перемножить, только стрелка для этапа 1 – амплитуда излучения в определенный момент – будет разной для разных путей.

Момент, когда фотон должен вылететь из источника, чтобы достичь детектора А в момент Т (см. рис. 68, б), будет разным для шести различных путей. Фотон, рассеянный в точке Х>2, должен быть излучен несколько раньше, чем фотон, рассеянный в Х>1, поскольку его путь длиннее. Поэтому стрелка в Т>2 повернута на несколько больший угол, чем в T>1 – ведь пока время идет, амплитуда излучения фотона в определенный момент для монохроматического источника вращается против часовой стрелки. Это же относится к каждой стрелке вплоть до Т>6: все шесть стрелок имеют одинаковую длину, но повернуты на разные углы, т. е. указывают в разных направлениях, поскольку относятся к фотону, излучаемому источником в разные моменты времени.


Рис. 68, в – г. Закончив умножать стрелки для каждой возможности, получим стрелки, показанные на рис. в. Они короче, чем стрелки на рис. б, каждая повернута на 90° (в соответствии с рассеивающими свойствами электронов стекла). При сложении эти шесть стрелок образуют дугу, результирующая стрелка является хордой этой дуги. Можно получить такую же результирующую стрелку, нарисовав две радиальные стрелки (на-правленные по радиусам дуги (см. рис. г) и «вычтя» одну из другой, т. е. повернув стрелку «передней поверхности» в обратную сторону и сложив со стрелкой «задней поверхности». Эта замена была использована для упрощения изложения в первой лекции.


Сжимая стрелку, относящуюся к T>1, в число раз, предписанное этапами 2, 3 и 4, и поворачивая ее на 90°, предписанные этапом 3, получаем стрелку 1 (см. рис. 68, в). Следовательно, стрелки