КЭД – странная теория света и вещества (Фейнман) - страница 62

б). Такая укороченная результирующая стрелка означает уменьшение вероятности прохождения фотона сквозь частично прозрачное вещество.


В случае поглощающих свет веществ малые стрелки направлены под тупым углом к основной стрелке (см. рис. 69, б). В итоге результирующая стрелка оказывается короче основной, что указывает на меньшую вероятность прохождения фотона сквозь частично прозрачное стекло, чем сквозь прозрачное.

Таким образом получается, что все явления, а также произвольные числа, о которых говорилось на первых двух лекциях, например, частичное отражение с амплитудой 0,2, «замедление» света в воде или в стекле, и т. д., более детально объясняются всего лишь тремя основными действиями – всего тремя, но объясняющими на самом деле и почти все остальное.

Трудно поверить, что почти все видимое бесконечное разнообразие Природы проистекает из монотонного повторения трех основных действий. Но это так. Я немного расскажу о том, как возникает это разнообразие.

Мы можем начать с фотонов (см. рис. 70). Какова вероятность того, что два фотона, выйдя из точек 1и 2 пространства-времени, попадут в два детектора в точках 3 и 4? Для осуществления этого события имеются два основных способа, и каждый состоит из двух независимых процессов: фотоны могут лететь прямо: Р(1–3Р(2–4) – или «крест-накрест»:

Р(1–4Р(2–3). Получающиеся таким образом амплитуды обеих возможностей складываются, и возникает (как мы видели на второй лекции) интерференция: длина результирующей стрелки меняется в зависимости от относительного положения пространственно-временных точек.


Рис. 70. Амплитуда попадания фотонов из точек 1 и 2 пространства-времени в точки 3 и 4может быть приближенно найдена, если рассмотреть два изображенных на рисунке основных способа осуществления этого события: Р(1–3Р(2–4) и Р(1–4Р(2–3). При изменении относительного положения точек 1, 2, 3 и 4 в различной степени проявляется интерференция.


Рис. 71. Если совместить точки 4 и 3, две стрелки Р(1–3)×Р(2–3) и Р(2–3)×Р(1–3) окажутся одинаковыми как по дли-не, так и по направлению. При сложении они выстраиваются в одну линию и образуют стрелку удвоенной длины (квадрат которой при этом возрастает в четыре раза). Таким образом, фотоны стремятся попасть в одну пространственно-временную точку. При увеличении числа фотонов этот эффект усиливается. Он лежит в основе действия лазера.


Что произойдет, если мы совместим точки 3 и 4 в пространстве-времени (см. рис. 71)? Скажем, оба фотона попадают в точку 3. Посмотрим, как это скажется на вероятности события. В данном случае мы имеем