(
1–3)×
Р(
2–3) и
Р(
2–3)×
P(
1–3) – две одинаковые стрелки. При сложении их длина удвоится, что приведет к учетверению квадрата длины результирующей стрелки по сравнению с квадратом длины одной стрелки. Так как две стрелки одинаковы, они всегда «выстраиваются в одну линию». Другими словами, интерференция не флуктуирует при изменении положений точек
1 и
2, она всегда положительна. Если бы мы не учитывали такой всегда положительной интерференции двух фотонов, то мы ожидали бы, что вероятность возрастает в среднем в два раза. Вместо этого вероятность всегда возрастает в четыре раза. Когда мы имеем дело с большим числом фотонов, эта превосходящая наши ожидания вероятность возрастает еще сильнее.
Это приводит к целому ряду практических следствий. Можно сказать, что фотоны стремятся попасть в одинаковые условия или «состояния». («Состояние» – это определенная пространственная зависимость амплитуды нахождения фотона.) Вероятность того, что атом излучит фотон, возрастает, если уже имеются фотоны в таком состоянии, в котором они могут быть излучены данным атомом. Это явление, получившее название «вынужденного излучения», открыл Эйнштейн, когда, предложив фотонную модель света, он положил начало квантовой теории. Работа лазеров основана на этом явлении.
Такое же рассуждение применимо и к нашим фальшивым электронам со спином нуль. Но в реальном мире, где электроны поляризованы, происходит нечто совсем другое: две стрелки, Е(1–3)×Е(2–4) и Е(1–4)×Е(2–3), вычитаются одна из другой – т. е. перед сложением одна из них поворачивается на 180°. Если точки 3 и 4 совпадают, стрелки одинаковы как по длине, так и по направлению, и при вычитании взаимно уничтожаются (см. рис. 72). Это означает, что, в отличие от фотонов, электроны не любят попадать в одно место, они бегут друг от друга как от чумы. Два электрона с одинаковой поляризацией не могут оказаться в одной точке пространства-времени – это явление называется «принципом запрета».
Этот принцип запрета, оказывается, лежит в основе великого разнообразия химических свойств атомов. Один протон обменивается фотонами с танцующим вокруг него одним электроном – это атом водорода. Два протона одного ядра обмениваются фотонами с двумя электронами (поляризованными в противоположных направлениях) – это атом гелия. Видите ли, у химиков сложный способ счета: вместо того чтобы говорить «один, два, три, четыре, пять протонов», они говорят: «водород, гелий, литий, бериллий, бор».
![](
AABUo0lEQVR42u29C5BV1bUuPKrokm7SIlCEl4DtG05ECdegXH8UgyEE45/ri0TNwRu1jI8Y
NT5INMa3V3wcMR6NsSKJHKP3AOrxNyEeEwX1eBHlEg0mtKjYovKSQkCExtpU/etzfdM1e/Za
e+/u3v3Ye39f1ay199prrzXXfHxzjDHHHLPGBEEQhBaoUREIgiC0nxiHRWlblLZHqT5Ke3i/
4XxOxSkIQjUR46lReihKT0VpVpS+y/PvRGlylPpG6USSowhSEISKJ8baKN0WpboonRClQVHa
GKWmKO0fpYOiNDZKl0fpJhWpIAjVQIyQANdFqYHq86SM6y6L0sIoLS+T94aUu7nANZJ+BUHE
mEmM86I0IUqfUZ12dkZIjQP522iq2MsznpFrQ55q2qmW439TmKe53n38PODz76O0IUo/Dv4/
gce/Rum8KK2K0vooXcj33c7PzWo6glDdxOjj0SidnXL+2Cg9R6kylLRqSCQjqXo3Uz3fGqW/
ZZAfrsFkz5Ao7eWdc6SVRUyQAm9mPubxuvAdfxSlk6M0MTgPO+oD/Pwy89jA7+64MkoDorRW
TUcQRIz78fhwhiQ4kJ83pBAdyGlalO7wCMYBEucj1tI2if+PitIcSqG9eX6XR05fzyDHeh77
UfpbFEirOHdLlHp59zOS4KX8HzA1Srv5uZf3GcS5Uc1GEESMuObwDBXb4RSSx7KM/59JkltJ
8gQB7eS5q6j2rvGuv4IktoXkCayweOJnEo9rUp4Fgj6Yn6+M0ouBVAuyrWM+1nu/9WFe8A6X
Mz87eP6CKN3I62eryQhCdROjU4kPjdJ4ksbWlOsg3R1tsT3uDym/H8Dfl0TpeyS0Wkp8s0hg
PskO80jxjCi9wN+bqe6OTcmjw+EkPhDgaVSbQWaXROniKDVSan0qkPwmk6zxv/s9aRTHl/h5
oZqLIIgYHeEcTXUS+C7Jpw8lKkhusDnCFnivxbO8IVkN5e+ne1Kes/01UCL0SWpvi12AHgvI
qIYqLlTrtSlSK8j2Z1F6zZLJkltIsuNJwHUk1n+3ZCImx/sCS1NU9KNSzAiCIFS5xLifd+5K
qsB1wbWLLbYhhmTl1Fv8Z11wfhgJa17wn/4kYvhM/p8ovW/xbPB+VKOftvQJmwkk2ntIbpAU
pzPBJrmIEiqkxnDm/FMe90+578lUvd9UcxEEEaMjnwM98nsySh+SvPqQjKZT4mvOUG+nUhL7
ILg//j+YROdjHI9Oupvg/QY73w0Z+T2MBOzsih/y3mstmYQBEa9OyecbPJ7L5zry/xLzMM/y
+zwKglAlxAjANWUfEgUmSZYEv2OSYgSlqmNJQKGrDqQ15/togYoN8tkaXD+NBDiThNWbRGwk
tcaMvIJAMbHjbIJrqeZv4/eRlCifTJGKMTM+mSR/Ucq9l5h8FwVBxEgcabG975UUUjRKUb8j
KR1IYvQlsa+RjFZnSHiYYNnhnevLe91G0i0WIHDYQl8jIbo8+P6GUJMxwbIqRSoGaZ/B41k8
9xrzvielT0EQRIxfqLW9PPU0bZncxxbPWA9KkcROI/m9nvLc75B8mrzzkymdLsuQCMdQugul
T/wPjuBP5HkXN4nyQkCKLq8g5dE8B2L+bZT+xPwvVVMRBBEjUO+RybKATHwcTPLcmCKJYXXJ
uhRpcxh/uzxQUfemar0i5TmXkBgXBOcxGw0/yj2833IpEuXpJOKQVHNUs3/tSatQ42dYMpmz
xrR2WhBEjJSghvBzXZ7rnKQYktI4EguI76skx2G8L5ymMds8L7jXhyQ62B8bA2KDHfM+az0J
0kA1+jHLniD5NqXBp1J+AynC7ohJFvgxXs3zX+FRK10EQcTYQhKEhIaJkL/k+T9si4tTSAk+
j26J3eMW+ySO47kGSmZrreXSwv78Heudb6JaDSCgw2cZqvJ+JPAVGXkE0f40kHx9wr2dpAji
voL58NdJZxGyIAhVSIxTqSIvtNZBE2pJIC7Qw9Upavih/Iw1yJjtdZMa6ymZ3Zii9sL+t4Uq
7f9HMjSqyfj/ojz5XZ7nHZ3E+0EK+U/n5/s98stR5QYxP2MtJ4gEQahCYqynauoIA+42s0gu
g3kOv3/Mz+9ZMqHhMNzipYJwjJ7NVM/zTZYdUgzqMyZSDonS8ZRYoVbDvpg1S/0GyffljN9B
cLAvHmGtnbTfpOQKJ3R/OSPy9kNKkJIUBUHE+Dl5PUhJcDdVSqx4wcSFi3TzLokS0t0Nlu6j
2EDC8gmqsYg8LWeaS1UX9/lHnuvXWOHgDkss3d0IPo4zM8ojJ1IUBBGj+/52lObz+6M87qKk
V8vvLqZicwZ5uNnspR3M0+Y2kFOhWeNiAuZq1lkQhFbE6Ijhxx2851Ek0vY4RreXnHLt+F1E
KAhCUap0RwF3HEzcLE5RsQVBEKqSGOHXiNncZ002OkEQRIyf422So6RFQRBEjEROpCgIgohR
EARBxCgIgiBiFARBEDEKgiCIGAVBEAQRY4XWpVbzCIKIURAEoXOJMY0oJYGUB1RPgtDJEqM6
mdCZbU7tSyg7YsRyvov5+bc8NqqoBEGoVmLMkRSv5PdzLd5vWcQoSOUXqlpihJSIrUMRwRuB
aFermARBqHZibGQawqO2DxUEoaqJ0RnGX4nSJB4VU1EQhKomRrcl6gn83mDJ3i6CIAhVq0rj
3BZ+HhGlPiJGQRCqnRixHenVUXrO4i1Sa1VMgiBUOzE6SRHYKWlREAQRY4wBPEJirDdNwAiC
IGK0b/K43rR/iyAIIsbP4eyK25gEQRCqnhhXWOzH2GRawiUIQpUTo3PwfjFKF0VpoCkaiiAI
khg/x+E81osYBUGodmLM8dxEfocqLXcdQRCkSkdpq4pGEAQRY0s8GqWpUfpERSQIglTpGMfw
OEhFJAiCVOmYHOv5faeKSBAESYwxlkRpuopHEAQRYyIxjonSbovXSguCIFQ1MTpcH6WTVDyC
IIgYE2AzrH6m/V4EQRAxfgE3G72vikgQBBFjjKctXis92uLYjIrHKAg9p79qiW43EeNUHkdT
ehQxCkL3Q4TYTcToCn4Mj6+Z7IyCIEhi/Fx17sfPCCDxmYpJEIRqJsaagAjfMm1tIAiCJMbP
iXB5lMZaHJdxWJTWqqgEQahmYvTRr4hrBEEQqooYN0iVFgRBxBjj4SidFaXeKiJBEKqdGJ27
zok8IohErYpJqNC2n2vDeUESo91n8coXQahU5Np4XhAx2jYe13ufBaFSMNLirYGbgvaN/tBg
8QKHP5ns6yLGQI04i9/hsjM8So0qKqFCVGcsYEAsgIOi9D7btiNHLH+FXX2CxcGav21aDiti
9NSIyTwOiVJ/FZNQQaoz2vZofoZ0OCJKvVKuXyltScSYBayVfk/FJFQQVrBdHxylXTz3cpT+
RvX6JEqND5vsjSLGlMYzKUpbLF4vLQiVgkZKjVCbESAFS2CdLfFYEuObUXpVRSViDPGExbPS
WPkidx2h0rDZWtoOL7HYruiiSl1gmngRMQbfoT68aPFmWFoSKFRqu0c7n0YBYKr3G3bHXKIi
UgPx4WwqfXncabKzCJVHiDmqzQss2QkTbf28KM1XMQlZ0uBhPDZYPDOt6DpCJcAf5J0f42jv
3E4VkWAF1GS4MCCIxA4Vk1ABQPi8oyyeWASejdLSKO1PSREq9ERJjEI+YnQz0c9F6W0Vk1Ci
dtadZpnjovSQpzLPtXgCZk2U1kXpZIsnX2pNnhhqsBnnL+ERM3UHmFa+CKVTYbsLA3h8nqTo
kzXa9ydRGmyxG88aVZmIMfyeo7qBERT2l/EiRqGIdlTTwyWt/Xh8KaPNA7tMk41CHonR7QwI
l523VExCEe2oJxMKpMWJATHmvLxDfcZql/WmXTEFy3bXATD5stjiVQCCkA893SbXYHFAFOCd
lDbvSPM/JTEK+SRGRB/ZSZVa0UWEcpcae2cM/kB9lH5BNXquqlHIR4x9orRHlA5kw9HyKKEQ
cj20fecsCRYBHBcQ4DkWxwW4TUKAUIgYj6YqvRcJUhDKmaxhO7wnSv8cpVkWbwsMW+IYtvU5
UZqp4hKyiNGNsIP4fTQ/ayQVyrmNY+XWHRabh2ZQSsSAj0C110qFFoqVGJ3qDMdXrXwRKkFq
XEOpcBa/I9xYs2myRSiCGF0jeYHqx3uSFoUKg9qz0C6JEef+QWKsNdkYBUEQMX6xGRb8vhSX
ThAEEaMgCIKIMR19VDSCIIgYk+9Qpd1M9FCLHbxlsBYqrd3nMs71hBBpQg+VGD/msZ+kR6EC
4UgPwSUQrR5uaY3ebzIxiRhT8SmPCtgpVCJGRemKKH3dkl0wsdf0DRZPOEpaFDGmAvthIOTY
EKrTiscoVIr6PC5K/2XJJlgOU0mY31J7F7IcvF+xOKJxPxWRUGG4kKSIgb9X8FtDlO6K0hkm
u7qIMQVN3uc6FZNQAchRIjyJ33sF5LjbkxwVH0DEmApMuPRW8QgVhgsCLaiXR4hYO+1WefVX
UYkY03Cw10g+VjEJFYKsbQt6ee0dRFmrohIxpmE4R9A6jZ5CBeFNT31OszHi+7wovaiiEjGm
Ae46W0mMsLksVFEJFYCnovRntmnz1Gj/iL2n5a4jYkz9DiJE6LHpKiKhgto6/HJvIzH6ky7u
M357TkUlZEXXwYqAKfwutUKoBDgp8PsWh9S71+LZ5wNJiFj98gHJs6dvByt0kypdz4YiP0ah
3Nu3T3CXWBxSD/u/3MTffx2lEVFalEKinZ0focyIcaD3GRsHzVdRCWUsJUIDus5id50tUfod
z08hUWJp4GKLtz/oivwIZUqM+1u8ERbwvIpJKGOAFH9lib38mSgt5+f1JMoGix2/Z6u4hHzE
uMniHdUwKy0/xq5X+YSOt2mU57AoLYjSBEsmWVZ41/6NRAnSHJPyf0HE2ALrvM9HmLY46CqV
TyhdWcJJ+y6SogMG+2eDazfw82lR+k2UXlV9CFlBJHawwUDFWKViEspUfT6Z35202GSxk7cF
ZGnUjm7hf7ROWsSYChihsQLgSovDNMnBWygXU8S0KP08kBSdnyI0n23eeUiVhwba0bejNFdF
qgZVCHuqmIQyUJ/Rln8UpTsse8nf8wXUZEiNl1IoUJBmEWPq+fH8/I6KSSgj1fkxqswXWeuQ
eZtS2nkYMAKTMOeZZqhFjBkjsBsxB6mYhB4MzDw/GKUjLfZJhLR3uSXRcuCO049q9MsphDo2
OAcp82Kq05tNHgMixgDOFrOviknogTjV4jXP4yjlYVYZCxGwuuVGjxRBcj+1eGnrZmvpjnMI
STNUu7ESZoakRhFjGpp4/FTFJPQw1FI6nEpSu46kiImXW7zrHqDkB9V4XaARAQd5UqIfsHZX
lM70pEZBxPgFPuFxtYpJ6GGAmefsKB1n8f5EjVSpMfHi7IqLo3Q3z++bQXDY6A3uOnBNG8z/
Lo3SVRb7O0pqFDG2OudU6B0qJqEHYq21dKuBujyakt/7UTqf10Dl/phEmQZsmwq75LUeqb5K
yXOmxU7f21XcIkaoGfABO43fV6iYhB7cdt0mV8d5avG1lmyBCrL7iyUBIvyJFPy2jFKi2+No
YpT6Ruk+SqXfMgVRETF6ZLjLtEOg0LPhYofOscReiM+PeO37eGu9pNW1++N4LX7HipixJNaD
eW4e1eoVJFrNUFc5MQpCueACS4JENEXpdo+8XPt+OoNUYWN07mg7vd+G8wiHcKz+uoLSoyBi
lOe/0OOlRbjqXMbvmE0+y1Oh3VYGsDXuSPmvc+x2Owcus2QZ4d48YnuP/2ays4sYPbiGo10C
hZ7WXp0KDcdu+CHCX/FcS4/CneVu89UorbQ4LJkjRoehPGLSZXnKPYUqJUa38gUNTu46Qk+T
FGuoMrtVK/BXnG9tswG+GUiYvirdoGIWMWap0VAjDrLsTcoFobtwOkkNaIrSrHa0+82BNOmv
ox6hIhYx5gNGzkEm73+h50iL8Eu83zt3rdc+c224T4h3LIla38/rH1KfRYxfAPbFo9lAZGMU
egqwiuUqS9zI4E7zSInuDXKFP+Mkfh9gCiIhYkwZUd/lZ+35IvQUYHXLWI8UzywhacF85MxG
MCHBDegmkaKIMSTG9ykxylVB6O42ivaIqNwX8Rx295tNMiuVRId7NPEznLwVVUrEmHoeBuhd
GjGFbobb7e9C7xxmoJd4v5cKfw/U9lqTP6+IMWiM8PGaYFodI3R/G0V8xSH8jnZ5Xyc96w1K
o3jWNgkFIsY0DJPEKHRzu0TbO9GSgCZY9ucHiCg1dljLyPWQGBVZR8T4BdAgYOR+zVruqiYI
XalCI2rO9ZbMQj8UpT910fMRn3F4J5KwUIbEiFETW6Yivt0eKiahm9rmr9gGAQSCuKKTJbg+
3mfMTI8RMYoYQ6xgo/xMxSR0g7QIR+6J3rkfWucvNEBMRufcjZlpbeshYmxxztkVV5pm5YSu
xzSq0OZJi12x+grrp5+J0nR+H6iqEDH6o/UoNo73VURCN7TJizwVGoPzpdY1kyAgX0TbOcFi
u+YxFq+s0QSkiPFzIOySi02H2bm1KiqhC9oiCGhKlL7Bc1i7DP/F7oqeDXLWzLSI8YvGhz14
F1ONVgAJoSvg9hrCTn9uj2esi15kXetL69sVt0paFDGatQwJD3eFFSYbo9A1QNCGOz0V+h5L
ti7tSnJ62bTfkYgx4zzIcANVCEUXEbqi/SFogwsQgcmW67opT9CQ3Kov2BgR6XuJqkrE6JNj
V4/WQvWq0Dfy+05Ki90Z8utF5glS4xgRo4gxBJYF1puMz0Ln4hfeZ7jMLOzmQXmd97mPqkfE
6GMbCVESo9CZ0iI2sXKz0AjgcHY39wfkaZV3bqiqScToYwkbiCZfhM7CsRY7cveiCj3TWu7K
113wN4CbwnwJIkZB6HSMjNK9loQTw+b2j3Rznpx2tMOS8GO9VVUiRktRIRaqmIROUFf/tyWu
OYjidIP1HLMNTEjvkhj7k8TXmDw0RIzEGBWR0AlSGeyKY71zcNVZ0oOIBxLjVn7eK0qHkBgF
EaMdaloKKHSOCv0zi11hEHj2TuucbQo6gj4kRGM+x1kcXEIQMX6OeqkPQonb2+UW71cOIPBs
T5zYgMSIACouXsBRpjXTIkYC7joK7y6UEj+yZKc/4GmvHfakwReeGFgOO93rC+oDIsYvgKCd
iuAtlAKjPOnQrW55qoep0D58m+J45l/RvEWMn4+Qj5mi6wgdBwJEzLHENece6/m+gVClt1gS
0VsQMX5+fpP1DGdbofwxwxJ7HfwD/70M8ryOCcQIc5KWBooYP1dt0Ci+pCISSiAtnul9f6FM
Blyoze9Z4mspiBg/x+umPS+EjuM6S3wWEc7rCq/t9XRvB7d1MCTGvVSVIkbgTWsZZUQQ2qNC
u1loTLgg8OwaK5+lqG4mGur0YRZHExeqnBgPtth/61aTH6PQdmAW19/pD9sUzOHncmlPS2kG
QJCL/VSlIkYAHv+TOcrLh0toK0CKDRavboF3w9wyHGA/tnhfdfSFU2kWkJdGlRMjsEKkKLSx
PeWoQp/Acx9F6XwSCmx15RTG7h1L9n/5MvMvVDkxwq1itYpIaANAiiMpLbq10Nda925T0JG+
gdlzRP6ZRMlREDG2kgIEIV8bQhvB2vqHPBUaqucD3u/liNUkRhA9bO7zVeUiRjjlzjXZVYTC
kiJwCUlkNwnyjgp4N3+f6b1V1SJGRBjZTilAxCgUIkVMTlzFz6uoTjeXscbh8rzMO6eZaRGj
fWBxFGM4eStIp5APiFf4S0s2qZ/ttZlyN8O8730+LsV8IFQZMbrZaHn8C4WAgBBDqEJ/YvGy
v0roGyA+zEzvJOljmwNsKbxRpFi9xAjs6UkBgpCGaZa45jiSrITwXDlPQGiyeM00XHYu5jtq
UrKKiRE7t61XMQkZgGvOHd7g+WdLVrdUCuCms4Wfe6nKRYzAcxoVhTxq5u2WRJ9xwWdzFSZN
4T22et8VP0DE+Lm7DqQBbaEqhGSB1S3TvXO/8dpJJQ2mmFl/KUpT+b3etB971RMjRsdTKDk2
q7gEAhMQ53nf51niqlOJ2Oh9RvyA+0wubFVNjPBl3FPFJHiAxPSgxfugAFgyh7XQlbymXtG7
RYytGgRmHGdJYhSIczy1ErjLynMtdFvgS4cNFu+eKYmxiokRbhePWLKAXi4K1Q1/pz/4LN5p
8ZJRq/B28ZbF3hnw1UTQ2v5qCtVNjCM9VVqkKFxgyU5/L0bpxip5779SSBgizUnE6FRpzDz+
R5SWqLiqGsdSjQbg13eDVU+sTpChm4BRTEYRo71tsdf/LhVVVbePvlG60hJHbngrvFmlZQJV
+n9E6VVpUNVLjK7id0idrlqgvq+zZMIFtkUEiVhbZeWAaPYnW7z6pUHNonqJ0f3W2+JwS40i
xaokRcRYvIDfd/L7A1U4SC6I0mWUGPtKSKheYkSlj2JD0BYH1dcuXP1fTCkJdsXrrfwjcrcX
MCu5iZdtaiLVrUq7BjCeEqNGyeohxRpKik5tXBml+6u4XPpmfBaqkBjXUlJ4S0VVdXjKErsi
VOi7rHpdVWooJGA7VbjsHGmxk7cCOFcpMQKIYPxelapP1Qi309+R3rlHTZtA+W0f5qUjRIzV
S4wDqDYMseqbhazmNnEtOz/QZHF4MZFi7MuLMGtYBbNUTaV6iREBA/aJ0v4W77ErG2Pl4+Yo
nWnJNgUgyUYVy+fYxCO2+5hkyXJIocqIEd7+sDFq28jqAGah4ZLiIlXPVOdvgU94hKM7Aqv8
wRRMouqIEb/B2I41sasClUKoPMBscr1HilAbF0hLaIGXgu+KslOlEiN+PzRKf/e+q5NUHjDZ
8mtrOQt9kyXhxFTvMdbRxIDBY73Jha1qiREVDled91VUFYv6FFKEjbEStynoKGBawtLAsRZP
To0y2V+rjhidk++YKC1TJ6nIukd97sEO7gD/xSdUPKnYYcmumbUpZSlUicSIvT0aovQVFVXF
IcfOjQmWEd75BVZ5O/2VCs3UoKaqKKqbGN1eF9oysjLxTxbH24TNDLaz6zxpUaSYjjd4HEKC
VHCVKiPGGlY6VKvHpTJUHKAN3GnJWug/WzzhIhSWGh3q1S+qjxhR0XDhONxiB28tf6osnGWx
kzIAX9V7VCRFARORmKCCL+O+kq6rU5VuYOUfFqVFKq6KqG/YFTGhdpl3Hv6LCyX5tBknRelh
9Y3qI8a/RekFS5xY1WnKGzmSIjaMd5ucwZF7rhUXUEQw28pUp6KoXmJER8Is5QcqqooBosKM
5efXovQ9Sxy5hcJYb8lWqoB2DaxCYgQ+tWQzLKla5Q0Xkdut3kBgkDXSBtoERJlaxcGlt4qj
+ojRkeAxUXpaRVXWdYx6xAzqryyZhYbU8xsVT7uwgcc6mia0tXAVEaOTICZa7McoA3N5wtUj
NrGa5EmL89mhpQW0Hcu8cjzNYhutVOoqUqWhemFWej8VVVljWpSu4ufPLHbNuVHF0m68YnEI
sn4UHCCFa810FRHjUIvdO95QUZUt4Mh9syWzqK+RFLcHEqVQPDZ6EiKkxqNFjNVFjHBLeNni
gJxSucoPcND/vSWz0HDkvssjRaF9qA2+a7O4KiNGzLohjPs2kWLZ1Svq6zpraVf8N4ttixrk
Oga4N7kdA40S+X9XsVQPMX5osR1FM2/lBZDesVE6xyNFqNB3qGhKgmZLNsYSqpAYHQ4UMZYV
6q2lXfEeSo9awVQ6bPI+71JxVBcxDmTn2qmiKhv1GYBrzgTvtxdNe5OUupyfj9KVPNdg8STX
Rg081SMxihTLR302qtCXWRIBZrG13sRJ6Hg5+/0C5ibtvV5FxIggEvDyX5oilQg9V4Xux+9Y
sXSGpMVOkRjhseHst82Bai1UODH2ZScTGZYHTo/SeH5uitIPRYqdJjGifOHoPYHSIkKQzVbx
VAcxDmKlT2eliyB7LrBK6XxKME0kSQUX7jxgwFlmiS13qIqkeogRe77Aj/GbJEap0j0TcOSe
Y4kjN7ajkBdB58NfEYb912tNa6arghixxhYG/P9UUfXY+sNANdOTXLC65Xcqmi6BT4JrRYrV
Q4xuT4t6FVWPBEjx1Cid651baXGcRZOE3+nYxIEIdvhh7CdablkFxPiuiqhN6GpVCnbF2yyZ
hYb6fFZAnELnYbVHjLDF9xUxVgcxOijKc3FlOcA635etxquLH1gSeBaS4vdMEy5dCTh0r/Pq
oK/Jl7EqiBGOwXBkRRTvuVLNCqKrOkWoQqOOLicpagKg67CZA9IET2oXqoAYX7fY9UMqdXFk
1VXPQUf8pdcZsUXBQn4WKXYtnGM3pEYEdFZcxiogRoyIWPkyRqp0j8HIKN1pScgrSCzXqVh6
BA7yBiihQokxTW2WKt39uJwSo1uO9oBpdUt3wt//5TuU3jUBU+ESI7DRkl3RRIrdC9gPD+Rn
t8JFOzj2HMDBXjPTFU6MjgRHWLw0UOj+ero3SlMpoWAzpgsttmlJku++ekGAlY8sMW3Ixlsl
EmOdJQFPhe4BSA8xFs/ypMWLLbFniRS7D2s8MsRk2JEmO2NVECPQW1JJt2JclK71vi+O0ryg
HlU33QfFLK1CYlxFdVodr+vrJsejH2MRe7dcFqhsqpvuxV8s2f/lGEmMlU2MrmNimRncEOQ4
3D34kcV2RSeZnGaxXVH10XMw2Ps8xeKgHkKFEqOTQoZSWsEEjJabdR1Q/tMCFXqpabKlJwLC
w3R+7q3iqA6J8VBKKhtVXF2OMzkoYRb6farQUp171uAFPB6lWyyZqNTGWBVMjA5wQ9glta3L
cQnVMqAXJcflKpYeCfgtNllsZ4SJwwWTqFHRVK4qrRm3rq0PlDtmoe8gITpV7S8qnrIAiBHm
J62ZrnCJsY5SI9boysbYNR3rZo8U11vsv6hwVj0X2zh4QWKEjXGE1OjKJUYnvaxnZWuZU9cA
gWfd6hanQmvCpWcD9bKCn2F2el9FUvmqNPaWRqRohG1XsILOxYlRusgjRUghC1QsZSHlf5Of
9/QkRqGCVel1rPiBUqU7rVNhYgszmVd552HbvcsbjCQt9myJcRs/Y0A73uKVSZqwrGBiBBCo
9h8qrk7rVJDIr7dk+9PPonSKaQVFOdWh78t4gsWh4RapaCqbGLdq9Os09KVk6EfNuVikWHZ4
wWKXnQaLw/RtVZFUPjFuU1F1GgZRYnRq2MvWMkCEUB6ALb6RxAgzyA4VSeUTI7Y2kLtO5wCS
4ghLJlxeMtkTy1Wdfov1CT/G/iqSyidGQDPSpQUmXc6zeCmZ81mEpDhbxFi2cIshsIzzf1hs
dxQqmBjhm7WHiqukACne5X1HJ7rU5C9azvi7J/k3mHxPK5IYXaViTxHMtg2S1FgywDXnTH52
HQkBIvz1tepQ5Yc3LJ48g8SIUH191Wcqjxhdx4R9cV+TzaSUwBI/55oDUrwnULtEiuUJTMA4
7w3U7+QozVexVKbEiLXSWBa4QsXV4bJ2MRZv9M6jbB8VKVYEcia3tqqRGGFQxvYGsn2VBhd5
n6FGzzIZ6SsJzmUH2FvFUbkS46cqppJJE6davCeIeWr00qC8hfLWCKBOu60oZF+scIlxgzpv
mzsIloTBZeN5liFMEtdbshUtpMU/eyYKlWtlwN9qGPvzPC5tq7KI0QGjH9Z+3mcKvlmsZIiV
LA9aHJ/vXJ7vzU4DQvyIKvRcdhrNRFdGvQPLvHOYgBng1bHqt4KIERLPRNOywGIxilLCaJJg
P+8355qDLVBnp3Qqofzxlve5Wep05RGjG+GcGriPKYp0MRhvyR7DvYLf3PdtMk1ULD72BkCs
bhpOTUv1XCHE6CoScRgPNvkxFotjAunQUr5vkKRYscDugK9YbGNuNu2uWbGq9AcWh1DSplgd
L09HjoMlMVYsoDq/SGKEGaVB6nRlEqODHFeLQ33GeV967GtJ5G6h8jDQ+3yItd72VgNiBRCj
VOjigcb+rCWRnLPwloqqYoEBbxg/Q2K8O0qHW7wd7hqvnQhlSoz+LoGYRf1YxVUUsHnV5IAc
fftiU5RupbQoyaHygF0ev8E6d+SI1U5wecMaeW13UCESI4gRs6gyIhcH2JNc5Bx0hrqAFO/m
NSLFypMUL4/SBdbaGwFoiNK9FvsFK+BzGROj67SYkUYIJYUdK75MIQ2eH6X7Ld4S9Tj+9oAl
u8fVqKgqCiC+szNI0QFuXDOidJOKq/wlRkg8vVVUbS7XzVSbkAZQolibMvAI1QVskTvH5BNc
9sSI4JvvmTb3KRa5DPVaqGxgn5d+eX53duYmkzdCRRBjH0o7sjEKQjYOIzHuzlCn3TmEmNPy
2gogRlQiHJIbTEEkBCEL0Arc8tndGaQIvGsyo1QEMdawsuXPKAjZmMvj/Snk6KTIld51QpkT
I0ImrbN4p0BBEPKT4/tR+kWUJgW/wRf4JyZXnYohRjPNTAtCsYAXwjtRutBiJ3+o1w+QNDeb
Ym9WFDFizxdthtX+8lUnqC5AKpxpcTBis5ZeCWoLFUSMG0zh2dsD1wkQvBZxGrFmFssB5cNW
+f0qZ3LTqmhi/IzqwABVdJsBNyesnf3nKO1psQH+PhFj1QyI0hoqmBj9pYHa5rM4lRmhx06y
eDOkb5AQt0TpYpPLUzUTZY1U6sohRnjpY98XRdcp3PhRnlgbjT1y3P7RzrcNs5Jy1ajOdjGA
g6VmpCuIGAEsC+yj4srb+MdF6U6Ld4brZ4l7hnPdeFTFVLVAGDqskX7I4onMhSqSyiBGuB78
XWpgJgaQFCfxe5PFkVY2WbxiyEnersylRlVHv0I9n0pSHMuEMH4/jtJ8tYfyJkZMIHxi8QY/
QnYZ+X6eiLmIcPbY92OExSsf3lcxVV3f+pconWOxKcVhCLUHxGW8XcJG+RIj4jCebnHIfiEd
mGVGdOZTLHZrmsfz2DoTEy+YtHrRkyKEygbq+KeW2JmvsTiy+xhPekR7eV7EWN6qdH9KRUI2
0MDDAKSH87hQhFhVgL35QmoKiOo922sjH1DIgBSpnTfLmBghAWFGep2Kq83q9RR+flPFUVU4
nCrzPSRF3+b4qsXbEYMYP1VRlbcqvUIif5sxiKoTsLeKo+rqHlgdqNfuiEGzKfhdKDNihJvO
BhVVm3GExfZFuO3MU3FURV9ybltn89yOgBSdmt3bU6uFMiNGV9GoREXvbjum8uh2WRSqBzA7
wYtjQXAeTt43U43+T1P8gbIkRjfKYWZ1XxVVmzGBx7dMe3xUE+CmNYX9J6z3azhgLo7Sb0zr
qMtald6bnVxBJIrDSItnIofy+xtq+FUBv463p/QxSIqXWTxTfYOkxfInRgCTL9olsDjATeMi
a73vh1C9fez6KF3J75daHMxWKHNiBCEukTpYdHkO5OdeKo6qB7Ss31tib4YqPVvFUhnEOJlH
548ltTC/OoVlXm6NNCTtB1QsVdmvhkXp1yRFTMAhmvf9KprKIEb8Pibo+EJ+wA1jJj9rtVB1
4tAoPWjx0r+dbA8KOVdBxAgi3MXKlbTYtnJ1s5Iqt+oBJt7g9/tdkiLszOelkGKtyTRV1sQI
Gwn8GB+yJBCrOnlxKrWk7OrCsVF6JEpftsS+jKhUX4nSDPYlowb2rrVeVy+UETFiO4OhgTot
CEJrCRCzzkOC8/0smY328bSKrLyJsT8rdz9JP4KQCajFWMlyTJT2sDjEHNZBI0gEVo1hSwNM
yB1EQUPEWObECMC+qD2lBSE/sJLlQwoTf7D0nSC1pUGFECPCjWHy5Q3vekmNgtAaWMkyP6Vv
qb9UqMTYbJpBE4Ri+1NOhFj5xOj88LRfiSAUhsiwSogR4ZH2itJRFq/vVMULglD1xPgli2fZ
tqeoCoIgCFVJjPBjhLOq3AsEQRAxEk5SxLagN0laFARBxJhAEbwFQRAxEm7Fixy8BUEQMRKD
ebzf5LAqCIKI8XMgcvcJHiHWqMgEQah2YgTgy4gYc82SFgVBEDHGi+K3RGmQaYdAQRBEjJ/j
A4s3DxcEQRAxEv2ZBEEQRIwElgQikMQ2FZUgCCLGGHVFXicIglA1xAhpEVsbHGJxeHZBEISq
J0aH4SoqQRBEjDH2VxEJgiBibIlPVESCIIgYW2Ijj31UVIIgiBhjfMxjvYpKEAQRYwzn3L1d
RSUIgogxBgJH7FYxCYIgYmyJXlKlBUEQMSYYEKjS2iWwPOs4V8b5zGqjWfFBc8H9wqMV+L1Q
QOZiyrOYoM41KflNe79cmbWL8L61Kc/JlUNjzIehPO5XLi8kZBJFOeczVwQ5ZnW+XBt/z5Wg
PNtzTa6L6y7XifdFnfQlKa5tw2BRNsQ4kMfBknTKGtOi9Ia1XtbpGjDibcI1q97Sl37WB5pD
Vv2MZJtp8u65g9du531cwON6aiT+TpTA0965hij9a5QWRulNnvvU4uAm2IdoapReiNIQi1dn
PcJrhvPZR0bpTOYH6/5ftDiU3scc7A/i73dF6RVPGMC163lfXPuexfFIG/j7Uczj4zx+ZvH+
6+6dD2Ye3uE9cK9N3rV47z6e4HFglP7AZ0ywONRfH9bbRku2L+7jlW0f/uY/ewfPb/MIaYBX
hznm/VOWm/+/HP+3PSAxfD6AzxrEazbyvMvHDu9a1P93ozQlSo/xft+J0g1RWlQJqjQKchg/
j2clOfedXVHqzc8fegS6V5QOYwVv4vUfe/cA3o/SVn5GgfZnI9rEhrR3lMZE6S02UDTe19mh
hluyMddQntvF+2z0KhmN4lDecw3fYwj/dziPy7xG5u5lXgcc5DXG/Zm3HexYzbznQD6jj0cs
7rOxEQ3zOsFhLK8V3n03BeURYgevqyMhGMtskEdW6OSree1bzF9/5g9kdVmUXma5uHLGNV9h
A0bZvBalsVGaxbz+nXV1GBt2M+9tzEc938OV+77s1EP5rLEkhFX8fQUJAGWygZ9HsQ42Mh9Y
l7+E77qFRNTA+25hghTyLq9p4LPQ7kZH6UT+3kByGcrPDhfxuNOSACnAQ975DcF/jHkEcZ5s
sc3d4VqWG8pmH7bVFSzPIcFzUBaN/DyW7+rjNV4z1SNlhy3eZ1e2XybRN/Pasd7/cK9nWP+j
+b99eW2DNwC5ctvivfsr3jVugDqJZXAwjys4oI7lPZp4j37e84z92JXXRrbz5eVOjM2WhBtD
QS0gCTWnXNePx9qgwrd4ldrgnWsObBD9goZfy4Z9EAt2J5/dj5XgrnHPb/Yqxt1nFM83UeJ1
o3M/r6Gu5/fBvL/rBBY0zCHefV0j6kfyafbeq7fXqd25wbzOLxv3DkMyysQv253M+57e+V55
6m1L8J4OUwu0Bff7XTzCG+GjoIOH95iech/87xivsxzNe0zy6shHSEITvDIa4Z3v5/13iEdk
U4N3WOkNxB/xe0NAhHUkYJ84d1OCavDefS+PgBtS3rUf3wvtaK7FK8XG8D2/7D1zN/OM+z1P
0nLPd0LFMPa3ORx0xpBkFnsDrbFPOPJz+WpiWQzxiHes1x5cv/jYax9jvXfoTdLqz/fxBwRX
7mNImmMD8rPg+26vffYK2sqSSiDGHF/kaFa8a8RDguvcSOMTnJNOnASxjoXcwGsWs5BnePfo
x0a8kg1jEO+1y1PnX+bIvI7XTfAqejQr2CfgF7x8r2RD7ccO9+WUPBvVr97M7wavo6z0JDvj
aI1GPY6fV3vk+45HbLWUDutJbod6pL2S77eF/x/mdcbeLP8VlARPpMS2mvf+Jo/7eGWEevoG
O+gclslodsRnozTZkzDx/SVKboOYt/+g2tgcqF/NnhS9g/cY5NmeP6akXe9JGZ956tUe3v0O
Yaf2yb/eI7hlPELS/FaUrmee9uGx1uvMs1nHP4jSb0kszd6AW0PtBerk7Tx/P+v/L7z+HJbl
PWwDB/M5wHH8r9MUBnpS9GZqH2i7d3uqq3s22vYlVO+f9Qb7JpZLaIaoDeycw5iXV713yjE/
k1l326hFbSNhHWNJxP3XWSfNvH4F32FAUKe1/PwZv+/hnd9GyfAo/h95/ydqMEvZrvtQC7mc
bQnt7lLmZw+PHNd7/bHsbYyP82Ucyx8bpfM4GjeyMTzMSqjnaPO+Z0sYyYJrZIVcwEq6jPf8
La9z9p65lr23TK3XibZ79pNtrOhRnrqK+z1KYvEbXY55msTKRGVdSFvIQs8et9N7h3FsCPNL
WO71HmkU6zz/QPB9Nv9fG9zjXDbiJV7nWsKyeyDlvvnsPpvzfN/sqYZZ16fdb03G+bS8ocz/
xPcbR7Lcznr3DfszCzx3O+1etSmS+WwmhyXe57kZ91tU4HdX1nMzNIGs//hYG5CtX1Z+W2z0
rl+Yce/5QVm0BduD/y/PkPp+7H0GaR7Bz3t755ZXAjHWsBGv8a5bxDTKs7XlvAqbG9x3jfcd
v98Upfs4OtV4ldqYp1L9huMTSU3QERuZFhVodGuCBn12kOcwH8s7oUJLtZIoFxjLazyCqcnT
ucoJ2716KJaAiyWfzkazVR983sjim7J21wldIWosmYlsLPKFawK1oSalUbfVf6wmRRXJ8lUr
5j41wTt3VWWW4r6FfN/KykWiiDoTyrO+/D5bUy4vUEgisSI6V7EOnPl8tYr1H+vIPdKuLYXf
Wnulvc68RyURiUixvOsqV251qb1cBEEQRIyCIAgiRkEQSssXWfb8irEFixgFQSgW/qSePxlb
cTZgEaMQwq2LhnOuW4e7zTQBIsQLKuC03pdtwi1LhfP8wkp6URGjVCMAq2rc+muscqgNrnvS
WjpBV8J759pZVrkC54q9f77/mnVuuLG23N+9CwbMWyxeHHGbxWutsUILS4XvtXjVzZoSPlfE
KHQrOTwYpbN4zq1zdcss3drvZytUJSzFfzoaLiyNRHtSuDF3/deiNNHi5bw3WsuoSHdYvDps
TYnLXMQodBumkQixJnke1aQP+NvpUfp1JxEjlivC2T/f6hC3TnmAJYsDCq0acmuk/fXZbpdL
F4xhBu81L+X5uH649x2SNAIoYGns29baJw9LFf+nxRGHXEg0vBtWHCFgxCMZpIA18wip9r2A
UFD+1/E+Zwf/wbP2siSqlItb8EYeUnJLZbdaEpbMrcdfn3K9i1QVLsQ4ylOb/Tp4g+/4elBv
WP67L8vzILYx3Bdr1Xt8+DERY/XCrRsHHvBUZX8JoYv/92YGaWEd9oHefV7itWtTOieCRGAN
+06em8KOebW1XnI5jFLJaHbofUhQCD6BIAVPpJDNsXzGeEq6/SyJyOSCTrzJo4sGgyAQ/hrf
kez4J1jLAAjGfF9iLdd0I58P834rvfO7qFqeZnHgjyUZAxJsdnsHpNYQpX+2loE2XBk+Zi2j
ARnziHI8IoUcz2W91rWhXeA9EaNyfqD+IsbBJwGZ1rLMnyWROul3BusPZLjOy/8k1o9Tu3vs
LLaIsboxlY37txltAx33FWsdJxIk9C+WREvyOxWkpDM8iQP3ucJT10O8lEKM03m9u98K7/w2
EmNI0jczv1D1XmTeYDN14bVe857zHt89DMA8yZJQaovZ4dGBj+f5IwJiPJjPWcx3dv0JEtXv
vfJNk2qP8j772Ivk3Ts4P5T5xbNusCTSE6TVi1IItobEXEfJeAEl2uHUDobwXqh7BFRB5KDz
KOW9E6i/I/nudRwI/PiQKOu5AZd8k9ecxMEIvx3CMhnsqd09Vr0WMVY39k/pgL5Kh5Bz9wbq
Zg070Fh2rPs8kv06z9cGJDCOkufpnvT5bYsDxO6ZQhrTPfvVM5aE2xpvSdguH0fyuSDSqzwJ
DUS5kPc403uPaczvQynPdqR4skfuO5mnTcH1dZQsnwyk5HoSHMj41Yx+5571ZorKivsuC84f
yOOjgSp6CI8fBtcfQCkNkuz53rvU8jvydmJQt++TIJcH0twk5skNFvuyrhtYvs2BZDuWA4if
z4FBuUmVFnokQDQTqfY1WevgGoMoVazJIM317GAuoMh8qppnBh2lLzvQvwUqpYsG/klw7wlM
yNPLXues530+ScnPQE8y8p8xnBLtrCBPzoa4PqNsLgtsbC501jvBdcOZn6eD818jOdySYRMd
QAJx5eOT6r58h58E16Nsl9KUEGJxynMwiHyZA5v/Lv/EcnzIWgeM/r5Xl/7gczyJ1B8soDX8
MeW5U/ncfw/OH21JoOmXRYxCT4XbjuDfLH0CZKolIf3NI8wDKKE9YC2jLDnVe2dwn+MolYbk
cUQgMbn7OxXzbmsd//EaqoRpRLOFKrsPt43FjpRnr7ckWrtfJrtTzrsAxMuC9z2RnfztFOmu
zrLD1R1hycTJn2iH22pJcOfZATGhvGHH/EvKvf5gyX4xPkbS/vhsRpk8nVKGePYjGQPhY8Ez
RlBafj24tp7q9fKU83699mj3HRGj7Iv3BeddQz2XBNEYnP8B1d/nU9TQEVTdfCL6KaWNFwIC
dBJbaM/ak88NOy4kk5tS7oHnfofqcpp0i/x8kEIAYVBk3GcyO3VIpA2U4v4RqKrHUELOpZgo
5lm20/NEL291HKBcZPLdnjTt3nMgB5xHU56VFZtyX0v2Zwnz9oylhw5cktIeQLD7pEiqyO9H
gamgnlLlLRkDsVl2cF8Ro9Aj6n06pcXGlN9rKSUtCTooSGUGpYdngv+MYcf2bZIDeJ+nUlSu
oRlS20BKqY158u+r/H2olj6ZIgGdQAloe2AigPR1efBugyjJ/SYgH2fbvDuQrH/AvL8U3GcU
y/bKjHLPUYrGu5/kkfZwSlmveVKYy8dXqEavsNbxNjEzvtGSQM7OhQgTL+cF5e7MJ/en5A2R
7N9NIdpJFrvbvBScP4TX5wJ1eWzK+w7gO+PdPuvJkqKIsbrhdnibl/F7AzvaiqARY9uIvXg+
DC7s1Edf2vo21ehlKRIpnrHKWs5e47dPPWm0GHeOw6iWfhj852AS4PLguadYshFaSABA6Ap0
mJdX//7TLdnh0Mcplr5xlsvDBOZrjkf+fjT7ldbS9cVNRs2zltHandSK+1xmLW2r36Vq/kqK
1Aab8hspUuF0kmM4QB7P+2wOJMOJluxS6HAMJdtNKe0G5HqdlS56vYhRKDncjOiqjN+P5jXz
UkhoVyA9uA48MrDn1bBTWaDKGqUq+DE+HpDGNEp596VIFeE+L+63K0kKfwqe8QuSTEgCkwNi
dPc5nu+2Lrj+PHb2j73rh5H8nrPWAY/PDkwEIc7h8bEUCXcXpTAfX+WzBqaUyX4c4HYFkvS5
GeoyJN/B1np23dl7V6cQ6QksA58AD+Jzr06R9qEdhA7cmNTplSJ1ihiFHoWxlHbeyPgd5LHF
WrugTOf5RUHbqeF/nvP+M4zqdZO1dnD+AdXupwNyPZkk0D+4N+4Fx2tMvMwP8gSS/V+BugxV
Ersl3hnYHQeQGB5gPv11wOOZJ+RtZqCOv2kt3WrGeu84wJOmIA3Czvp+Cvm4+41jeTxnLaPT
HMayfSljEKtPud9BLF//WZgR3zPFDGJUr9/zpFxful6XMoC52f5NwfX7k/zD9jOO5/1Nx2pp
MlhsrSdqRIxCj5IWf051eE1G5z2IHTfshKPZ4EdZy0mZY0kW93mdsA87VW3K/SdmSHn1lM7+
GkiSR1CKvSLooOfw+nBiYBptWf+RQvgNKZLy1yxx9vZtgyfweHWg3q7mc0G+/2XxNrvOPNCL
R6il9wZlfBhJ6CrPJljjmSJqreUWvW5CZCeJ+1TWG+yzR/EZcwOSB/l9ZInTdc4rk6ksK98e
WcPfVqaouc7H1fc0wGCA7VFfCAbOGg4seHf4OLqtaE/j+SeDMhQxCj0KzsZ1dcbvzn8xnM08
xJJVLr+yePVFM6XCn1Ha8V1DtvHcwezQm9iZj2IepgdSnpFgQKYzLJnFhmp+OCWRNR5ZgmDP
pHQZbrKUJanW0X75XPDcETwu5juey3dDwgzrwuD+TVQZx3sDxhaaBt6l5HslzQVfDYixzrOH
+vk+jeW+I1CZccRs9Fk0bfhLAV9LqcfBLLvQdjuc+Q5V+AMscYTPMrncTCnYTVDBTecma71u
/Dnm84+WBCQx5nOelVEgWxFj9WEqO3zWQv7xPIZuFc7/DQQ1yZLJCofbrKWBfiMls7RJnsWe
tOh3lDsopf3ak1K2kjAuTcnrFk/6ywXE1ZRyPZ77VmAvG0D1eSuf7SZI1vEezSn3x7nvWrJv
dx2lSCdF32qxm1K4quV1SmwvBYRi3qCSNhv/QxL6SEp3+3qkGBLNtYFK7Mh3AQmzMeV9VnrE
6JPX66y7KXzmej73fm+w8D0Ebvck2kM5ODbRZFJW2/iKGKsL4yiN1ea5ZgAbfTgLOYZkdTqJ
Aarf9fwds5bheuscVd8l7Kxu1cNZJIztKW1xDe9/TmBT25BC1Mjf+ex8IWZZ4hYS3n9Nino9
icTu8rQo+F+WlJO2b7frUzelXO/2Za9J+c8dlu3jl/N+m8OBYpWlz/BmuTlttvSti+GcjsmR
v6W8K64/m1LxDq+s16ZIvG5mvdGTNss2ureIsboAO91elh4txzIkRfc/2AUv90hjCVXHrAjf
johmU2KAFPGOR0xZe4YsYSq033chEkgjl7T2fwolz1kZ+WpP/ML29Ktmyx/P0OXNJ+Os/ZuL
eXcfy/PcY7tlr+DJet8aT9Iuy73NRYzVhXmUNNbnuWZzSie5iBLY0uDa7QU6jE9gjQU6a1cG
a3Xv1ZeS8APee3f2ft8deddSl1lHg+wWkw9JjEKPx9o22nqcg/FY2pZWVEg5uM4KB3RMnNyq
piGIGIW2zA7CuXcIJb7mCmv3X6EU/YqahCBiFNqi3kDFxKzlakscd3MV8v4z1RQEEaPQnvaB
yZjFFtsTm1UkgohRkGQZY007VHBBEDEKUsEFQcQoCIIgYhQEQRAxCoIgiBgFQRAEEaMgCIKI
URAEQcQoCIIgYhQEQRAxCoIgiBgFQRBEjIIgCCJGQRAEEaMgCIKIURAEQcQoCIIgYhQEQRAx
CkJnttNhVnjfZUHoVmJM20S7mA3SBaE9OCtKP7N4R79ZUdqmNib0NGKsyfg+KEobVaRCJwBt
q4HpMxWH0BOJEY20b5TeDiTE9pDiMI7+23tQmYxkfnqaVHJslAZG6Snrubv1oT0dwLawuYT3
HWPxFq6zWDc1Beqvj8X7YAtCpxKjrzpv8zqm2zWuPbvHDYjSg7zfd/M8t733z3efrPtNi9Id
UVoRpSusdDYt/7m+qSHfe4W/XRmlqVEandHpazrBjFET5DXt/v41GDQfjdKWKJ0ZpbUlyA/q
5GgODI0F8oA29XyURkRpP5NNUuhkYvQ79UlReitKS6JUH6U92ikdHMaOvtI6f1tO3HuUJ8lk
PWs4iac/pY5SlG9fkr+lkEyxGBelsRbv7/xBBnHmOqncQEhbo7Q8SrWU8jfyt1ww0KBs17Ne
Z0Tppg4+fxgHz/lFSoAzqW43mWyQQhdJjGhoE6jOoIM8zob7EqUs1yCLVfNO5PUn5WnE/xKl
wVE6vwOqGfJ4V5SmkIRhwJ/t/dbs3XuBxUZ+vMv1UTqjgx0M73gb3/PJKN1Pwr2O6uGzecgj
x3KewfzWkaS2ZxDhKBLS61FaVKL2gYHvF6yDv0TpuCgdFKWPovRulN7nAPmvbCMoy3uidEyU
To7S3A5IbfWsty9H6YkiCByDx0WUVk+mtCoInUqMDpdEaQg/Y6bwaTb8h6I0nqP7mxzhs1TF
ASSGC6J0WookUMsOho5+Du9X3wFiRD6nR2k3iX001awv8ft7UTqbHQnPeM77D95rIfOUK5Ik
azxSO8uSSYNJfF5fEpilDCKh6nobOzuO73jSYkiIKMtTWTd4z/+X+e6oJL4HpcNJ/L4rSqv4
eV++zwgSfjOfh+feEqUbWX7fKnKw9FV11PfdrIMlJPt8qKW0CFxM6baztRBBxPgFDgq+Q707
Mkr9+P1GHqHyXcYGGuI6dvZ7PAL14TrR9Txe3UFb0XKSRS9+78fnO/QPyuEaT3W9lx377XY8
dzolJ2PnhsR3gsWTJ3Oi9GkeScgRw1kkxZkZ9VVLqWoUpbPxJDHYR1+2jk+A4P+XUmL9MDCp
7E0SXOjVmSOiOygRowy+zmuKVd2NxHoWP28t4j2mM81hOYgUhS4lxrvY+HpRLV3B830pcX3K
DrE6SptS/n8uSQnq7E8KqL7TqRZ93MH3Q6ecSGkXRvxrLbaRQmq7MlD3avgekGT/REnvLqrE
uTZ27lqS4U528ibef3sReXakOI8DQ5b0PYPHo5hvR6hncsBaWIL2sTZDLT2E9TMn5T8gyj+y
DqcWmQ83eXJBMHAVUokHkLxRzrcHZohmdXGhK4jxFR4hgX0/QyLMUi0hhc0ioZ5v6TOLp0fp
p1R3gXWUVNqLnCexQSWf7EmpR/H4Tsr1jSSYOyj1fd1TTUP7XpZ04jolyLFPkZ00R7IDsa0n
iedSnukI4Wckd0ce20kOINXh7WwP/mRKLpBOHbGDgH9O08najDLfyeMJ1BI2F1Cf8T6/J5Hu
5nn4LC7NKGf3/TpK95cGZhmRotBlxDie0uLTlICKJaeR7ET9qCKndZKb2cmXsJGDFDZQmiuF
anSKxe4k7r3PpsSzLOP6p6nCwm43MKXjn8vjAxnkcjy/z/PscoUAafk8lvFCqvBZ797A44rg
/LY8hFcsKaZJZZP5rDEsy12WTGLlw+AipdcLAlI0PuPjjIEB30+ldLmEkr8gdCkxOoO46+wv
tcF+VUMpZiylxbkZ19SRjE6kCrYnVXJrZ0dPe88LSY4HssOeadmG+kZKbUNIDD5J/Ip5RH4f
CdRjRy5jSLyzrXgH9rEcfMJ7pb37/pSom4LzbqLp4+D8BJoIBntSnwWfca97A9MC/gvXql9a
MvE2h2WXTyrbRKkREzhfKtC2YObATPJrLANj2eMdstyTRnKQxTN+ZKV1KBdEjEXjINrojKRV
60kt6Mxw3ViU0oAP8P63gg04zQfvx0Gjd5Kpr2qdQtvW4BRJCUT0kKXPxtaQFIZ49qtrPLU6
y2F4FTvqGO/ct0k+jsiGW+uZddg0h1JCvoUmiDr+dmseu9lBfG909ofzSErOBHCTJbPB5kmy
H3nl464/kPlaRcl0L4snNpyfZRPzmOZ8vohmjptJsMWoqnWeOpylPjvCvpYkh88HR+k3FrsG
DQ0kRl+qvZwmlx8WadIRhE4hxk1spI5cYDvqz9+GkMTS/Of2s8SN5NmMzh5iTx7/FKiOv/a+
T0/5X1OGyobnYZZ8GhM64JttePd3vc/vk7jqeD5tKeRUkiKuO8ISdxfgvjzE+KGnQr6Tx7Zm
Hhn4RDOKdTLXkpl093+o9H8gCdZSktuRh+TCOlrEQeG/WIbjChDSQJbR7gxSNKrCvySZ17FO
53GQhK31pxkmm4lUveelmDIEoUuJcX+O4Fuo8viEtYXqdRp2epLDW0Xmyd3T77D/sNh1ZQq/
byHJOMnkjTy2vBw78XL+5/eUPucXMB2M4feNgfR0DzvuXRkqnMsTnvECJebVJKViVL5mkmch
k4H/O8j+cZL1zBQSavbKc3sBG2Mug5A303RwI9tDPmKs5fETj+R9aRSkdxXL8inaCVGns3jN
4Rb7mDYH9VJLdf8jSpqC0K3EeBSloGssWa0B8vgaP7+a8b+tnq3usAx128cwquZNKer2TK8z
9MlDMjnPHtgQdODNJGhIvZfmkd7GeANBSOjIx7/nIYbBlJSeY8cu1m3mAz7PLb1bU4QkZ5QU
H+HnHxUplee7L+73A0v8J/3f3QDYv4iB1CjRheV0AKVO2CmfoIqO8j7LuxZl+J8p93VO+vOs
ff6lldRvi1n/3515q3hiHMaGHKpw21PU51yKevsuiXFHkZJpA21Haflt9iSgfI0B5HI7yTsM
UrHaI/ssqXEyBwJ0wBdTnrU8Q9UFGY+gpNTWxoHB5RmqlJOs8EyrU58fZ5lNL4G9LceBaUpA
jA7reCzGv3Q3pbu0AeAUDkqQvK+0ZCLLAbbPpSl1+n22qWt7GCF0F3LWswJOV0RdFFugR3Gk
3k3pr5BaZ4GEtoz/H1RE4Y2g+v1CEYWe7z5fpQRyaZ5rNmXkvYbvjPd9qEDjC/NwJN/1tnZK
bc9asmqmEDEeS+IZzf/ML1G7GGnJaqawfqdSqv0gz//rSXjXZUi9zRxU3czy7pTygood2oFv
o5TpLyXtjI7o+2z2VDIEzqUgMct6zqx8DQfVF3pw+UGY2C9fHoslxok8PuRJJG0hKUgDF1AK
KxRxBYTwWkrHa2sHOMJ7dijiD2VnfD3j3oeS4K6jBNcWW59bB/3bdlYapCa4r4yj9Lk541m4
Bg7ovazlDHspMJmqbK21nvUG6WO54V/zlMMlHEDn5GlztZT6Gpj/UPNYGNxzBs0fpX7XtPxj
sMEqrp+ktI+00HGlJOi2RML/n6wPSPH/aqUJzVdINU67zr/mRGpZ+3QTMWZNVvrvcIUnNM1O
e6diidFNQjzczoyCXF4hU4+y7BBStZYEdihVQ5vK5/kVC+L7s0c6fsHAbPAYO39bw2bh3f65
g5W6nXa5OyyJrBMOEC5uJCabLrTSRdNxWMHBEFL3Ek9iPpfSwBkZpowcy89Nqqy17PBoJ1oS
iOSOAtIRBon7OWDe18mS2DRLlmPmEwBcSLnPSkwAbTEPLLTE3WmedSyiUK7I81n5c/V0G+t0
bReT4dfIG2tTfhsUnP8N6/lamqHWhANAIWIcRpXSSV9bU64ZUECMdwX4O4vdbcbkIcZBVAtL
EaUalXMxOx3cYJ5gXk4nWX49410W0IZ1Rjueeb2ngl5PtRi2uL09aevaPO/vyup+qsbX8j0a
A/K9mZLiLpYTKvkgSxy153SwYcLmB6fsc1j3qF84959A0luYp+1gxvp5qnc1eVTtq6iSXx3U
ddjpMFjeabF70QWW7gcbttlmSqJ7eeedM3y+dgX3IQTaXUyVPWt2foolofZeI5GWKmI48v9T
fvYd4z+liQnt4UXmyQ/WcSPbe0dIeho1tmWemcmt+tqbA3Ga+ukGlN+zTguZkfzYqKXAFPbb
N6mpvMWyc54lQ1k2zjSFwf4kkiLKs9Xy5kLEeJYlEXOM0smnfOgmNgzYBN9nxubnabQvWBJQ
4dkMaa0PC/bpEhQWGuqDzD8ksFN4/gRKM69ayzXB+Pwrkv8Zbaw0l/8mSyL5TOeztpIcXWSi
PxbRiZq9gQR5+ob3HEyMuNUhOP6flP9vtI759zWT2K/11PUtJLPZGaqVCyc3gQNPvvK7hnm/
x9InsfzRGwPYJHa2JRlSjLsehHIy29mE4JqdQf5DIp7GMlthLVf1+OToBzhp4sDk3KRc5ypF
tPnDg/z70aEmskxyzCMGoKPZrzZxoGnP80fShNDA533C86Gt+b957+nK51S2lzsp0W/OYxK4
hO0KZT2zRMS40+sPTkvEKrs6SxahjAz+s4TveyM14ZP8flmIGBeyoR3M7zB6b6D9qY6jZW+v
Ep+w7FUkeKiL03ew18h9NNG+9Y8SNbD7OLrNtMQh/IeUqFyDd+k2SqwnZ5B2MXYhVPh/UMoB
Ie5gwj2GeO9YrK3xRFby6ZaE0/oDpbedHonVev9z9dJR1QTqxdlsPHtR4no7j6r7IBvmmZY/
TBwmjC5jw701RVryfUZraQ+aYy19FtPU82PZttCpP6Jq2cQOvi+lh1V51Off03xyaZ78X8x2
dA3rYyDtfBdRaDi7BJ0ckv73PC1jF4+YZPklpTlf6l3OsrmP+cjnRpYPkyjkrOS7rPOEFWM/
N69v+uX+ELWEm/LYJacwf1M9gu9oBCTXDiBB/z8cUNwyUkiPR1IQSbN317AOT6eWehcFmYKq
dA0L+Hiq0++woe3wfm/2iKU5Q/Xwz6Hg9iTB9rfW/n3NVtrlXZspIcwl4S611uuAnWR8AY9t
JUX/HZszCN/aodqC0G/wCMJ/p4XWuUhzS8qHozkyzyFx51MT7/UGEd8GeShJ5jqvDi5nB7rK
kuDFp2SYCr7P42OeGpwrYJzH5x9xwG7yNIW0NjzSkpB5t/LcGpbPGA4Ow0pkW1uTQs57Mf0u
5XqUx/kcmPZvZx8aQKm0GJu1Kx8X4X0PSv9p7QfldjtJp4maR28SUXOJ2qm/gCOcX4AA8WNL
jwK1hpLrXYEAkpcY/ZdbmmcULWZ22j/nnKN/3skdPBeQyfw8RuQXSNZPFWGMbqvxuiMAyX6r
k59RCsxjGS7P05Fq2ABHW/o69WkkmB2BZHk5y+FUSvWoo20phDuOneCPBTqcX+8TmSdnJtqc
p5ynUgtI8598hfdqS0fP55gdnsO7/Qvf/W8Z7/QQiXGip7m1ZXCvzzOPkNXWb6GkudjS3etA
ik8yX2gj32XfH2TJ8uBSIW3AcwNZvq0xnmad9qMQWJAYa9op6RSDWRR7ewJqqOY3eh1Y0Z/b
Vn5+MNusGcvTLVkLfWvKdftSIuzjSZ+PU+Kfwe9QF69MIaAh/M8Ga1v4sV94A9CSAte6mJqN
KQR7KFXQfDEnQzIsRDqnUq3fxXLZi1pNIRJF8I2+QV6O5bvekEca3Jcq56Yiyw73PIefV1iy
ra2fl4EcrK5h3Q3g4LfCOsfvEoPrag5id7FOryiiP28hMY4oxsbYmeSw3HrOvhy5LnrnSkUo
meQy1DTnaL8ggxw2keD+LxtpP2oqIIi72bF+nEeV78cGPorndrCzbs7IMzq287Z4sYi6X2VJ
oGb/PpBW98mQ5JzE5NDAPBoJA6T3K0ufKDuYZOVs027/myz3J/eedcFvl1Cyq6OUtijDxDHB
Wm+LnA9TLYlQ/2JG3aOPf927L9y9DvLe138OzEX/5LWFPtZy2amzRzoSDoFlpndYEuQauN9S
XHGKHe17CilV4/MriRzz2aF+Zcks9BMp/3GBQxx57GZChPLB7NhZPqXoMN/0/rvcEk+ALfzf
wjwdG1hWRFtYmHGfG9kZL0z5bX9LZkqXUALe5BEYvDuyVhDdRCkZ9z+LKnKaG5u/+ZqDH+pt
qPeeGzOe1dcjlCc5CIB8PqUEls9HcoO1Xrrpozkoj49YDmEbADE/x89NlkzwhnArvELy/oAq
8eG0Z+J9vlJEP9/mDVY9hhiFyidLX4X+cYYK2NcSdyYXpqwXie4ey+8ADnvVMWzcz7CjgnD2
s9auJj7qSvCOPydpXZMhiWFlFbwg3uLntqqPIKOLKXUdR8k7aysJR0AglD283+/1zAyPZDxn
Px4X8+gmSvA/zDb/JuU/6zw1tNjN6sYznxsz7reEg5qLD7qOqven/M+eHgmHZLedhDmf74x8
++v9s6Tgvt6gvFDEKHQFRlHqg+1qVgEp0ycx5zd5ruXfitfZ/kByoY9iserTbna8tuJUSnOL
8xD3ZsvvT1ooj24l1N0kyL55JDfnp7fUWgZrAWmdUUCqP5NEhJntt63lUtCs2f327sXUZOmr
photWXTRUReeNSRVSI0ubmhWGfdPG0BFjEJnAR31UUvWQuezKdeycTpH5vWUNBcVYfb4AUn0
9TaaSTamqJ3FwjmDL7ZkeWRHTRADLAmrFxLHKpZjvlVjk3l8NiU/+Zb7jbRk69lGT/oqVIYf
pKmgeYD36+2ZRHIF1O5iMINt54GUd93K5+2Vh0B9E8RKSYxCVwA2t7FUj+7LaGuucY71Ru2d
lC6LWf89klLlOk+1KxYvWRKJ/Rgr3nUMkzYL2PHcYoBSTCJeRxX26pTf3NLAT/NI5hMpjS1o
43MnkeAeKyCZh/gryaRfkc+ZTFV6Z4nal5vQezHjd7fI4vUCg9JhPF5unruZiFHoLBX6XEp+
VxdBHuM8e5Vb01qMKuy2kHjNsicWsoAOtYGSWEORhOACAqPDnWStl751pLxO5XukbRF7OEnv
jYz/u907H7S2r9keYMmWIG0h+GYSY1YUqBAHUzp/vURtrJbt5dGM3yEtvlsgX8j7LZT8X5Yq
LXQm3C6KIKwfepJfvg43hmr09Zb4IRbTQZ36+EobJTd3HWx38HfrW8R/J5B4QPY/scR1phTo
z44+JKNfDuQ7rs0gCDgmP23pYd4KYb8MSbGYUHsPs1yOLECsIH4sl0xzzm8vnCfD8JQ8D2P7
eyTlP+ap0HdSY3gyJFARo1BKoD3NpHoGKeSFAte74BNTKMH9axulLEhK8yyZ2GmrOgsSPpOq
PGa31xSQFBt4vdueA4Rab8XPyhZSS8da67B8oyidXm/pq1lOYPkdZm1fjIGyx2z3LmtbfFUH
lMNfLF5h8nIe6ewUlt2DVjoXuYG85y/5HRvnbbeWEe0XZLxTPfMC88M9lrIoQMQolBITLdme
tlhb0gyO7r9tY6eZysY/z1OLXNAOh3wO3sbfIMlgwuJ/W7wL4uYUiewuS1w6HiIRr/fOTbaO
rfGHWno/7z3HEjsjYhRgtv15/h4SFuydt1HyWWNtC3Lr8j2apOwCwRzIutvEfL1XgHB/Z7FT
/kzLjpYziPcs5TJAtznelZYEDIFUDWf/L1tsM0wzK/gRklygWhMxCp0J2N7epD2pWD/BD0kG
j7TRvvRNj1idQ+9O5sFFHJpryY6JWUSxnNLYLRkqYR+qf/NItC7cHjqgm/CZZh0PfoL3x2QS
Jq2cozPMC5i4us5az9jOIFnCx/DWdkrMdSQUlF0Yvs55CCy2lhGnQuL9G6Wuczm4pZHRl9gu
3ixhW2tm3a5j3TVYsjjgcsuIzG1xaLrplr19iohRKDnQSb5jSXDTpiJU76eoBuWseN/DQSSx
neyIvyWpwAF4mdfpNxVxvxp2ItjasK72tUBC2kbJwg+Hhv8cwM87SlBufvQpqH9DLQnmsDxD
tYd9FJNHPwnu0RY8TinL2TgPI2kgH6uZjxHWclVNmvTtAhvvFxCjy9Pt3gBTymXANTS/gOCG
eAPjP/L8x+1G8FS+9iliFEoNP2RWofYVOg/n2vCMCexs/7D8/m/FdkRIXX+kOh36xaWtNmks
YZn5tsPGIu7tZuPvtI7tErg9eNYiStlOOmwssh5R/j/MY7Jo7MT2lmujtI6ITYeTTDMn7ESM
QqkbqbWD6NqDxnbmKet3kN9kEmO9df1GTm0pq6cpqS7ohHLe3M685XpAeyvm9zBuY04SoyAU
JoXHreMBVDsbxUiVQgfw/wMUSd7SK9CcbwAAAABJRU5ErkJggg==)
Рис. 72. Если два электрона (с одинаковой поляризацией) пытаются занять одну и ту же точку в пространстве-времени, интерференция всегда отрицательна. (Так проявляет-ся поляризация электронов.) Это значит, что две одинаковые стрелки Е(1–3)×Е(2–3) и Е(2–3)×Е(1–3) должны вычитаться друг из друга, в результате дли-на результирующей стрелки зануляется. Такое нежелание двух электронов занимать одно место в пространстве-времени называется «принципом запрета». Этим объясняется большое разнообразие атомов во Вселенной.