Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной (Попов) - страница 176

Система адаптивной оптики является более сложной, и ее начали использовать лишь в самом конце XX в. Прогресс адаптивной оптики во многом был связан с ростом вычислительных мощностей современных компьютеров. Эта система предназначена для компенсации искажений волнового фронта, возникающих в первую очередь из-за влияния атмосферы.

Турбулентность в земной атмосфере приводит к тому, что на зеркало телескопа от далекого точечного источника (например, звезды) приходит не плоский волновой фронт, а искаженный. Характерный масштаб неоднородностей в атмосфере составляет 10–30 см, из-за чего изображение точечного источника начинает состоять из отдельных ярких элементов – спеклов, которые за время экспозиции сливаются в сплошной диск размером около или чуть менее одной угловой секунды. При этом дифракционный предел на угловое разрешение телескопа может составлять сотые доли секунды, и для приближения к этому пределу в оптический тракт телескопа (обычно в фокус) вводится дополнительное специальное деформируемое зеркало (или несколько). Система управления сравнивает изображение эталонного источника (это либо яркая звезда, либо чаще «искусственная звезда» – возбужденное лазером свечение верхних слоев атмосферы) с идеальной картиной, на основании чего вырабатывается управляющий сигнал, подаваемый на деформируемое зеркало. Форма зеркала меняется так, чтобы максимально восстановить волновой фронт (т. е. компенсировать искажения, внесенные атмосферной турбулентностью) в отраженном потоке. Коррекцию можно проводить сотни раз в секунду, что позволяет практически полностью убрать влияние атмосферной турбулентности.

Современные телескопы оборудованы системой адаптивной оптики, позволяющей улучшить угловое разрешение за счет компенсации атмосферных искажений.

В пятерке крупнейших телескопов есть два инструмента нестандартной конструкции. Это 10-метровый Hobby-Eberly Telescope (Хобби – Эберли, Обсерватория Макдональда, Техас) и 9,2-метровый Southern African Large Telescope (Большой Южноафриканский телескоп, ЮАР). Главные зеркала этих телескопов не могут наводиться в любую точку неба, они вращаются лишь по азимуту, зато простота монтировки (опорно-поворотного устройства телескопа) делает эти конструкции намного дешевле. Тем не менее движение узлов крепления вторичных зеркал позволяет наблюдать около 70 % доступной части неба. Правда, длительность экспозиции (непрерывной съемки) ограничена, а поле зрения невелико, и одновременно использовать полностью всю площадь светособирающей поверхности невозможно. Зеркала этих телескопов сегментированные и имеют сферическую форму, что также резко уменьшает их стоимость. По многим характеристикам такие инструменты уступают телескопам вроде Subaru или VLT, однако низкая стоимость ($10–20 млн против $200–300 млн) делает такие системы привлекательными. Они применяются в основном для спектральных исследований отдельных астрономических источников.