100 великих научных открытий (Авторов) - страница 160

В XVI в. магнит получил славу чудесного камня, способного делиться своим «даром» с другими предметами, притягивать тела даже на большом расстоянии и через преграды, а также узнавать родственную породу.

В начале следующего столетия английский ученый Уильям Гильберт обратил внимание, что железный предмет, находящийся вблизи магнита, на время тоже становится магнитом. Ученый предположил, будто магнит окружен «миром добродетели» — по современной терминологии, магнитным полем, которое и воздействует на близлежащий металл. В работе «О магните, магнитных телах и о большом магните — Земле» Гильберт заметил, что наша планета — это гигантский магнит. Желая изучить направление магнитных линий Земли, ученый пронаблюдал за поведением железной стрелки на шаре из магнитной руды и нашел, что на экваторе стрелка ложится параллельно шару, на полюсах становится перпендикулярно, а в области средних широт принимает диагональное положение. Кроме того, Гильберт смоделировал магнитное склонение, указывающее на смещение оси магнитного поля относительно географической земной оси, и объяснил это тем, что шар сверху не гладкий, а шероховатый.

В том же труде ученый изложил результаты своих исследований касательно свойств естественных магнитных материалов и железа, а также подтвердил выводы Марикура о двух полюсах и законах их притяжения/отталкивания. Вдобавок ученый исследовал силовые линии магнита, водя по ним магнитной стрелкой, однако понятие «сила» по отношению к магниту счел некорректным. По его мнению, о силе можно говорить только применительно к электричеству: мол, электрическая жидкость притягивает тела, не изменяя их форму, а лишь выпуская собственные частицы. Между тем магнит действует через форму (или «душу»), меняя притягиваемый предмет и внешне, и внутренне. Отвечая на вопрос, почему намагниченное железо теряет притягивающие свойства при температуре выше 700 °C, Гильберт сказал, что виноват во всем разрушительный характер пламени. Якобы огонь меняет структуру материи и деформирует металлический предмет, из-за чего тот перестает притягиваться к магниту. Затем, остывая, предмет восстанавливает свою форму — и вновь обретает магнитные свойства.

Позже теория Гильберта получила свое подтверждение. Как оказалось, способность намагничиваться зависит от направления и силы тока в атомах вещества, то есть от движения электронов. Любой магнетик состоит из нескольких магнитных областей (доменов), которые различаются направлением электронов и, соответственно, собственного магнитного поля. Когда вещество попадает во внешнее магнитное поле, электроны начинают вести себя по-другому, и границы стенок между доменами сдвигаются. Например, у ферромагнетиков (веществ, способных сильно намагничиваться, в том числе железа) магнитные поля атомов стремятся выстроиться параллельно внешнему полю, и выходит, что те домены, где внутреннее поле совпадает с внешним, разрастаются и занимают собой все пространство. При повышении температуры молекулы вещества возбуждаются, электроны меняют свое направление, наступает хаос, и вещество размагничивается. Но стоит снизить температуру, и все возвращается на свои места. То есть можно сказать, что магнетизм действительно зависит от структуры материи.