100 великих научных открытий (Авторов) - страница 82

Исследовав химические реакции в гальваническом элементе, ученый доказал, что количество электричества, получаемое от вольтова столба, соответствует эквивалентному количеству растворившегося в нем цинка. И заключил: «Электричество, которое разлагает определенное количество вещества, равно тому, что выделяется при разложении того же количества вещества».

23 сентября 1833 г. Фарадей наконец записал: «Числа, соответствующие весовым количествам выделяемого вещества, надо назвать электрохимическими эквивалентами…» Они «совпадают с обычными химическими эквивалентами и тождественны им». Так, для ионов водорода, кислорода, хлора, олова, свинца, йода Фарадей установил электрохимические эквиваленты 1; 8; 36; 58; 104; 125, а чуть позже составил таблицу для 18 анионов и 36 катионов.

После сотен опытов ученый сделал расчеты и обнаружил, что в одном гране (66,4 мл) воды «содержится» столько электричества, сколько нужно, чтобы 800 000 раз зарядить его лейденскую батарею из 15 банок 30 оборотами машины, и это количество равносильно «весьма мощной вспышке молнии». На таком основании был сформулирован второй закон электролиза: «Для выделения на электроде одного моля вещества, которое в процессе электрохимической реакции приобретает либо теряет один электрон, необходимо пропустить через ячейку 96 485 кулонов электричества». Иными словами, электрохимические эквиваленты различных веществ пропорциональны их молярным массам и обратно пропорциональны числам, выражающим их химическую валентность (способность атома соединяться с определенным числом других атомов).

Работа Фарадея поражает воображение. Возможность окисления и восстановления веществ электрическим током открыла широкие перспективы как для научных исследований, так и для химической и металлургической технологии. Еще при жизни ученого началось использование гальванопластики, создан первый топливный элемент и изобретен свинцовый аккумулятор.

Периодический закон химических элементов

К середине XIX в. были открыты 63 химических элемента, и попытки найти закономерности в этом наборе предпринимались неоднократно. Первым расположить элементы в порядке возрастания атомного веса попробовал Александр Эмиль Шанкуртуа (1862): в его варианте элементы разместились вдоль винтовой линии, а их химические свойства циклически повторялись по вертикали. Однако эта модель не привлекла внимания ученых.

В 1866 г. свой вариант периодической системы предложил химик и музыкант Джон Александр Ньюлендс, чья модель («закон октав») внешне напоминала менделеевскую, но была скомпрометирована желанием автора найти в таблице мистическую музыкальную гармонию. В 1864 г. Ньюлендс заметил, что если располагать элементы в порядке возрастания их атомного веса, то примерно каждый 8-й будет своего рода повторением 1-го — подобно тому как нота «до» (как и любая другая нота) повторяется в октавах через каждые 7 нот. Элементы, имеющие одинаковый атомный вес (по данным того времени), помещались под одним номером, при этом наметившиеся закономерности быстро разрушались, поскольку в системе не была учтена возможность существования еще не открытых элементов.