Диалоги о математике (Реньи) - страница 33

Архимед. Ты ошибаешься, мой государь. Именно потому, что математическая модель — это только приближение к действительности и всегда имеется некоторое отличие от нее, нужно остерегаться и не увеличивать это различие еще больше небрежным использованием математики. Надо быть как можно более точным. Кстати, относительно приближений существует общее заблуждение, что использование их означает отклонение от математической точности. Приближения имеют точную теорию, и результаты о приближениях, например неравенства, должны доказываться так же строго, как и тождества. Возможно, ты помнишь приближения для площади круга с заданным диаметром. Я доказал их со строгостью, обычной в геометрии.

Гиерон. К каким еще результатам ты пришел при помощи механического метода?

Архимед. Этот метод привел меня также к открытию того, что объем сферы равен двум третям объема описанного около нее цилиндра.

Гиерон. Я слышал, ты хочешь, чтобы после смерти на твоем надгробии была начертана эта теорема. Ты считаешь ее своим самым выдающимся достижением?

Архимед. Я считаю, что сам по себе метод гораздо важнее, чем любые частные результаты, которые я получил с его помощью. Ты помнишь, я однажды сказал о рычагах: «Дайте мне точку опоры — и я сдвину земной шар»? Конечно, на Земле нет такой точки. Однако в математике имеется точка, на которую можно опереться, — это аксиомы и логика.

Гиерон. Ты все время говоришь о прикладной математике, но примеры, которые ты даешь, относятся к геометрии. Как можно применять геометрию, я теперь вижу. Например, функционирование машины зависит от формы и размеров ее деталей. Путь камня, брошенного твоей катапультой, есть кривая, ты сказал, близкая к параболе. Но как обстоит дело с другими ветвями математики, скажем теорией чисел? Мне даже трудно себе представить, что она может иметь какую-нибудь практическую ценность. Конечно, я не говорю об элементах арифметики, которые используются в любых вычислениях. Я имею в виду понятия делимости, простых чисел, наименьшего кратного и другие, подобные им.

Архимед. Если ты соединяешь два зубчатых колеса с разным количеством зубьев, то с наименьшим кратным сталкиваешься неизбежно. Тебе достаточно этого простого примера? Недавно я получил письмо от моего друга Эратосфена Корейского, в котором он пишет о простом, но остроумном методе (он называет его методом решета) для нахождения простых чисел. Думая о его методе, я сделал эскиз машины, которая реализует его идею. Эта машина работает с набором зубчатых колес. Ты поворачиваешь ручку несколько раз, скажем