Диалоги о математике (Реньи) - страница 9

В науке особенно важна ясность и точность выражения мыслей. Язык науки не должен создавать дополнительных трудностей при восприятии сообщаемой информации. Без этого требования не может быть науки как системы знаний, не может быть уверенности в том, что определенное утверждение или предположение не было искажено в процессе рассуждений. Необходимо также предусмотреть все мыслимые исходы и не пропустить каких-либо, кроме рассмотренных, возможностей. Научное изложение должно быть кратким и вполне определенным. Именно поэтому наука обязана разрабатывать собственный язык, способный максимально точно передавать свойственные ей особенности. Прекрасно сказал известный французский физик Луи де Бройль: «…где можно применить математический подход к проблемам, наука вынуждена пользоваться особым языком, символическим языком, своего рода стенографией абстрактной мысли, формулы которой, когда они правильно записаны, по-видимому, не оставляют места ни для какой неопределенности, ни для какого неточного истолкования»[2]. Но к этому нужно добавить, что математическая символика не только не оставляет места для неточности выражения и расплывчатого истолкования — математическая символика позволяет вдобавок автоматизировать проведение тех действий, которые необходимы для получения выводов. В качестве иллюстрации рассмотрим следующий простой пример.

Пусть требуется решить задачу, которая формально сводится к решению системы линейных алгебраических уравнений. С помощью привычной алгебраической символики необходимые действия осуществляются очень просто. Нет нужды в каких-либо специальных рассуждениях: они выполнены раз навсегда для всех подобных систем. Применение набора стандартных правил позволяет без принципиальных затруднений довести решение каждой такой задачи до конца. Представим теперь, что мы лишены языка математических символов и в нашем распоряжении имеется только обычный словесный язык. В таком положении находятся, например, те, кто должен решать алгебраические задачи средствами элементарной арифметики. При этом немедленно возникают ненужные осложнения. Каждая задача становится особой проблемой и для нее нужно разрабатывать специальную систему рассуждений, самый простой вопрос требует серьезного умственного напряжения. Вспомним, как просто решаются сложные арифметические задачи, когда для их решения мы используем простейшую алгебраическую символику. А ведь это одна из простейших задач, с которыми приходится встречаться в науке, планировании, экономике пли инженерном деле.