Принцесса или тигр? (Смаллиан) - страница 121

Машина Мак-Каллоха и теоремы Геделя

Возможно, читатель уже отметил определенное сходство приведенных выше задач с некоторыми свойствами первой машины Мак-Каллоха. В самом деле, работа этой машины оказывается связанной с теоремой Гёделя, и вот каким образом.


7. Пусть у нас имеется некоторая математическая система, приводящая к набору утверждений, одни из которых называются истинными, а другие — доказуемыми. Мы предполагаем также, что эта система правильная, то есть каждое доказуемое в ней утверждение является истинным. Далее, пусть каждому числу N ставится в соответствие некоторое утверждение, которое мы будем называть утверждением N. Предположим наконец, что наша система удовлетворяет следующим двум условиям.

Условие Мс>1. Для любых чисел X и Y, если число X порождает число Y в первой машине Мак-Каллоха, утверждение 8X истинно тогда и только тогда, если утверждение Y доказуемо. (Напомним, что число 8X это не 8, умноженное на X, а цифра 8, за которой стоит число X.)

Условие Мс>2. Для любого числа X утверждение 9X истинно тогда и только тогда, если утверждение X не является истинным.

Найдите такое число N, при котором утверждение N истинно, но недоказуемо в данной системе.


8. Предположим, что в условии Mс>1 говорится не о «первой машине Мак-Каллоха», а о «третьей машине Мак-Каллоха». Попробуем теперь найти такое утверждение, которое было бы истинным, но недоказуемым.


9. Парадокс ли это? Вернемся вновь к задаче 1, однако внесем в нее некоторые изменения. Вместо символа P мы будем использовать символ В (в силу определенных психологических причин — каких именно, станет ясно из дальнейшего). Определение «утверждения» остается тем же, что и раньше, только на этот раз символ P везде заменяется на символ В. Таким образом, наши утверждения принимают теперь вид: В‒X, NB‒X, ВА‒X, NBA‒X. Все утверждения, как и прежде, делятся на две группы — истинные и ложные, причем нам не известно, какие именно из утверждений истинны, а какие — ложны. Далее, вместо машины, печатающей различные утверждения, у нас теперь имеется ученый-логик, который верит одним утверждениям и не верит другим. Когда мы говорим, что наш логик не верит какому-то утверждению, мы вовсе не имеем в виду, что он обязательно сомневается в нем или отвергает его; просто неверно, что он верит в это утверждение. Другими словами, он либо считает его ложным, либо вообще не имеет о нем никакого мнения. Таким образом, символ В (от англ. believe — верить) означает «то, во что верит логик». Тогда для любого выражения X у нас есть четыре интерпретации выражений, содержащих