Мы привели только два примера неустойчивости плазмы и рассказали о некоторых способах повышения ее устойчивости. Неустойчивостей же много, очень много, и они сдаются, уступая настойчивости и изобретательности теоретиков и экспериментаторов.
К сожалению, управление термоядерной реакцией связано не только с устойчивостью плазменного шнура.
Заряженные частицы плазмы способны изменять свою траекторию и убегать из термоядерного реактора. Картина эта выглядит так. Заряженная частица плазмы, пытающаяся двигаться перпендикулярно магнитным силовым линиям, под действием поля изменяет свою траекторию на круговую. При достаточно сильном магнитном поле она начинает двигаться по спирали вдоль магнитной силовой линии. Но если поперек магнитных линий ей путь закрыт, то вдоль линии она может двигаться и через торцы объема покидать реактор. Как же удержать этих беглецов?
Для этого есть две возможности. Во-первых, можно буквально свернуть магнитные силовые линии и саму камеру в виде бублика, образовав тем самым тороидальную систему, у которой нет концов.
Второй путь - усиление на концах (торцах) камеры магнитного поля. Резкие всплески напряженности этого магнитного поля на торцах как магнитные пробки закроют концы камеры и не пустят или, если быть более точным, почти не выпустят беглецов. Эти магнитные пробки американские ученые назвали магнитными зеркалами.
Так был преодолен еще один рубеж, позади осталась еще одна трудность. Но, как это часто бывает, сразу же появилась новая Оказывается, частицы плазмы могут все же перемещаться не только вдоль линий магнитного поля, но и, к сожалению, поперек их.
Хотя они в основном и "привязаны" к магнитным силовым линиям, тем не менее могут переходить от одной из них к другой, перемещаясь постепенно к границе плазмы - к стенкам камеры. А происходит это по разным причинам: при столкновении частиц одна из них может перескочить со своей спирали на соседнюю и передвинуться так поближе к стенке камеры. Есть и еще одна причина: в неоднородном магнитном поле (а в тороидальной установке магнитные силовые линии гуще с внутренней стороны баранки и реже с внешней)
происходит разделение электрических зарядов. Под действием возникающего электрического поля плазма медленко движется (дрейфует) в направлении, перпендикуляр! ом магнитному полю и в конце концов соприкасагтся со стенками камеры. Найдены эффективные методы борьбы и против такого явления.
Для проверки теоретических представлений о поведении плазмы в магнитных полях в СССР, США, ФРГ, Англии, Франции и Италии создана целая серия различных экспериментальных установок. Невозможно даже бегло рассмотреть их все. Но с отдельными познакомиться полезно.