Маленькая книга о черных дырах (Габсер, Преториус) - страница 77

Итак, предмет измерений обоих детекторов LIGO очень простой: это разности расстояний вдоль двух плеч. Но эти измерения делаются с невероятной точностью. Например, когда LIGO достигнет планируемого окончательного уровня чувствительности (что ожидается примерно в 2018–2020 годах), он будет способен измерять изменения в расстоянии в 10>–19 метров! Это одна десятитысячная часть диаметра протона! Такая фантастическая точность необходима, так как растяжение и сжатие пространства-времени гравитационными волнами чрезвычайно мало. Например, движение Меркурия по орбите вокруг Солнца тоже создает гравитационные волны, но LIGO не может их зарегистрировать не только потому, что они слишком слабые, но и потому, что их частота слишком низка, чтобы LIGO мог их почувствовать. До 14 сентября 2015 года не существовало измерительного устройства достаточно чувствительного, чтобы заметить вообще какие бы то ни было гравитационные волны. Путь к первой их регистрации был длинным и тернистым: множество ученых во всем мире десятилетиями пытались разработать все более и более чувствительные детекторы гравитационных волн. Сейчас, на заре эры гравитационно-волновой астрономии, LIGO способен зарегистрировать только катаклизмические события, такие как слияние черных дыр. Но есть надежда, что когда чувствительность приемников гравитационных волн улучшится, мы сможем, наконец, принимать и более слабые сигналы, такие как гравитационные волны от столкновений нейтронных звезд. Таким образом, изучение гравитации демонстрирует нам одно из глубоких противоречий природы: с одной стороны, это единственная сила, способная преодолеть все другие и привести к образованию черных дыр, а с другой – она оказывается настолько слабой, что гравитационное «эхо», возбуждаемое даже столь грандиозными событиями, как столкновение нейтронных звезд, все еще остается недоступным для регистрации нашими самыми чувствительными измерительными приборами[17].

Сделаем теперь небольшую паузу, чтобы подытожить все, что мы узнали к настоящему моменту о столкновениях черных дыр и об их регистрации. Суть проста: все, что мы делаем, – это исследуем решения уравнений Эйнштейна в вакууме G>µν = 0. Но, как мы сейчас объясним подробнее, беда в том, что на практике эти уравнения решить крайне трудно. Решения, которые нас интересуют, описывают сближение двух черных дыр по спирали, их слияние и сопутствующее этому процессу испускание гравитационного излучения. Это излучение распространяется через пространство-время и регистрируется установкой LIGO в виде пространственно-временной деформации: расстояния слегка сжимаются в одном направлении и растягиваются в другом, перпендикулярном первому, а затем растягиваются в первом направлении и сжимаются во втором. Что мы хотим к этому добавить? Мы хотим теперь дать более полное описание того, что происходит при столкновениях черных дыр и как это описание в рамках общей теории относительности преобразуется в практические методы, используемые в детекторе LIGO для поисков гравитационных волн.