Примени математику (Гашков, Сергеев) - страница 35

q>k + Q>k-2, т.е. формулы справедливы и для значения k (несократимость каждой из дробей

была доказана в решении задачи 5.9).

б) В силу формул п. а) при k = 2, ..., n имеем


Поэтому для любого значения k = 2, ..., n получаем


что и требовалось доказать,

5.13. Если бы мы захотели приблизить данную дробь

десятичной дробью
то для достижения заданной точности потребовалось бы подобрать значения a и k из неравенства
Проверка дробей
показывает их непригодность и убеждает нас в том, что такой перебор значений весьма затруднителен, да и вряд ли приведет к успеху".

Попробуем приблизить данную дробь с помощью подходящих дробей к цепной дроби


Первая подходящая дробь >3/>1 дает погрешность

а значит, не годится. Зато вторая подходящая дробь, равная >22/>7, отличается от третьей, равной исходной дроби, на величину


(см. соотношение п. б) задачи 5.12 при k = 3). Таким образом, шестеренки с 22 и 7 зубьями удовлетворяют всем условиям задачи.

§ 6. По следам Диофанта


Самые разные задачи практического содержания часто приводят к уравнениям, в которых неизвестные по своему смыслу могут принимать только целочисленные значения. Уравнения в целых числах рассматривались еще в глубокой древности. Особенно много ими занимался александрийский математик Диофант, имя которого и носят уравнения в целых числах.

Простейшим примером диофантова уравнения служит линейное уравнение

ax + by = c в целых числах (естественно, с целыми коэффициентами а, b и с). Оно может быть решено разными способами. Но, пожалуй, наиболее универсальный способ тесно связан, как это ни странно, с алгоритмом Евклида и цепными дробями (см. § 5).

6.1. Без сдачи Докажите, что любую денежную сумму, выраженную целым числом рублей, большим 7, можно уплатить без сдачи, имея лишь трехрублевые и пятирублевые купюры в достаточном количестве.

6.2. Оплата покупки Докажите, что за любую покупку стоимостью в целое число рублей можно заплатить одними трехрублевыми купюрами, если у кассира имеются только пятирублевые купюры. Какое наименьшее количество пятирублевых купюр достаточно при этом иметь кассиру?

6.3. Необходимое условие разрешимости Пусть а, b, с - ненулевые целые числа. Докажите, что если число с не делится на наибольший общий делитель пары чисел а и b, то уравнение ах + bу = с в целых числах не имеет решений.

6.4. Сорока купюрами Можно ли набрать сумму в 1000 рублей с помощью купюр достоинством в 1 рубль, 10 рублей, 100 рублей таким образом, чтобы всего было использовано ровно 40 купюр?

6.5. Затруднение кладовщика На складе имеются гвозди, упакованные в ящики по