Примени математику (Гашков, Сергеев) - страница 43

- n>2, z = m>2 + n>2, согласно утверждению задачи 7.2, является пифагоровой. Докажем, что она несократима. Для этого достаточно проверить, что числа y и z не имеют общих делителей (см. задачу 7.3). В самом деле, оба эти числа нечетны, так как числа тип имеют разную четность. Если же числа y и z имеют какой-либо простой общий делитель (тогда уж обязательно нечетный), то такой же делитель имеет и каждое из чисел
и
а с ними и каждое из чисел m и n, что противоречит их взаимной простоте.

7.6. В силу утверждений, сформулированных в задачах 7.1, 7.2, указанные формулы задают только пифагоровы тройки. С другой стороны, любая пифагорова тройка x, y, z после ее сокращения на наибольший общий делитель k пары чисел x и y становится несократимой (см. задачу 7.3) и, следовательно, может быть представлена с точностью до порядка чисел x и y в виде, описанном в задаче 7.5. Поэтому любая пифагорова тройка задается указанными формулами при некоторых значениях параметров.

7.7. Из неравенства z<30 и формул задачи 7.6 получаем оценку m>2<30, т. е. m≤5. Полагая m = 2, n = 1 и k = 1, 2, 3, 4, 5, получаем тройки 3, 4, 5; 6, 8, 10; 9, 12, 15; 12,16,20; 15, 20, 25. Полагая m = 3, n = 2 и k = 1, 2, получаем тройки 5, 12, 13; 10, 24, 26. Полагая m = 4, n = 1, 3 и k = 1, получаем тройки 8, 15, 17; 7, 24, 25. Наконец, полагая m = 5, n = 2 и k = 1, получаем тройку 20, 21, 29.

7.8. Докажем справедливость утверждений задачи для любой несократимой тройки вида 2mn, m>2 - n>2, m>2 + n>2, где m>n - взаимно простые числа разной четности (см. задачу 7.5). Тогда после умножения чисел этой тройки на любое число k (см. задачу 7.6) те же утверждения о делимости останутся верными. Итак, если одно из чисел m или n кратно 3, то число 2mn также кратно 3; если же оба числа m и n не делятся на 3, то они дают либо одинаковые остатки при делении на 3 (тогда число m - n кратно 3), либо разные (и тогда эти остатки равны 1 и 2, а число m + n кратно 3), нов любом случае число m>2 - n>2 = (m - n)*(m + n) делится на 3. Утверждение а) доказано. Утверждение б) вытекает из того, что числа тип имеют разную четность, т. е. одно из них четно, а, значит, число 2mn кратно 4. Наконец, если одно из чисел m или n кратно 5, то число 2mn также кратно 5; если же оба числа m и n не делятся на 5, то квадрат любого из них дает либо остаток 1 при делении на 5, либо недостаток -1 (это следует из равенств


и того факта, что любое число, не кратное 5, представляется в одном из видов 5q ± 1 или 5q ± 2), а это значит, что либо число m>2 - n>2, либо число