Примени математику (Гашков, Сергеев) - страница 62


Рис. 25


Минимальное расстояние до полустанка достигается в точке F, для которой имеем


ибо DO = EO и DA>EA.

11.9. Найдем точку О, в которой должен находиться центр пруда. Поскольку точка О равноудалена от двух данных магистралей, то она лежит на биссектрисе угла между ними. Таким образом, задача сводится к нахождению на данной прямой l - биссектрисе - точки О, равноудаленной от данной точки А - населенного пункта - и от другой данной прямой - той из магистралей, которая образует с прямой l угол, содержащий точку А (этот угол будет обязательно острым, так как он равен половине угла между магистралями). Такая ситуация разобрана в решении задачи 11.8.

11.10. Найдем точку О, в которой должен находиться центр пруда, Поскольку точка О равноудалена от двух данных населенных пунктов A и В, то она лежит на серединном перпендикуляре к отрезку АВ (рис. 26). Таким образом, задача сводится к нахождению на данной прямой h (перпендикуляре) точки О, равноудаленной от точки A или точки В и от другой данной прямой l (магистрали). Если прямые h и l не параллельны и не перпендикулярны, то они в пересечении образуют острый угол, внутри которого расположена одна из точек A и В (ведь обе эти точки лежат по одну сторону от прямой l). Способ нахождения точки О в этом случае указан в решении задачи 11.8. Если прямые h и l перпендикулярны, то точка О должна быть равноудалена от точки их пересечения и от точки A, и этот случай также был разобран в решении задачи 11.1. Наконец, если прямые h и l параллельны, то точка О должна быть удалена от точки A на расстояние, равное расстоянию d между прямыми h и L Поэтому искомая точка лежит на пересечении прямой h и окружности с центром A и радиусом d (таких точек пересечения будет две, поскольку расстояние от точки A до прямой к меньше d - ведь одна из точек A или В расположена между прямыми h и l).


Рис. 26


§ 12. Кратчайшие системы дорог


Важными с практической точки зрения являются задачи, в которых требуется провести кратчайшую дорогу, удовлетворяющую заданным условиям, или выбрать кратчайший маршрут, использующий уже имеющиеся дороги, или, наконец, выбрать место для строительства какого-либо объекта так, чтобы впоследствии транспортные расходы оказались минимальными. Подобные задачи возникают в экономике на каждом шагу и от правильности их решения зависит очень многое.

Как и в §11, будем считать все населенные пункты, дома, заводы и т. п. точками, а дороги, каналы и т. п. прямыми линиями. Старайтесь находить такие решения, которые требуют поменьше средств для их реализации.