Время переменных. Математический анализ в безумном мире (Орлин) - страница 105

– То есть это как… делить на ноль? – спросил я.

– Скорее как делать из круга квадрат, – ответил Дэвид.

– ЭТО КАК ДОЖДЬ В ДЕНЬ ТВОЕЙ СВАДЬБЫ! – уточнила Эбби. – КАК ДЕСЯТЬ ТЫСЯЧ ЛОЖЕК, КОГДА ВСЕ, ЧТО ТЕБЕ НУЖНО, – ЭТО НОЖ!

Эбби была права. Если вернуться в детство математического анализа, Иоганн Бернулли писал об угрозе неберущихся интегралов. «Иногда мы не в состоянии сказать с полной уверенностью, можем ли найти интеграл заданной величины». В XIX в. математик Жозеф Лиувилль сказал об этом с определенностью: некоторые интегралы взять нельзя. Например,

или ∫ ln (lnx) dx, или
У этих интегралов нет чистых решений, точнее говоря, они «неразрешимы в элементарных функциях». Соберите все синусы, все косинусы, все логарифмы и кубические корни, какие вам захочется, но ни одна из стандартных алгебраических «отмычек» никогда не подойдет к формуле. Это замок без ключа, загадка без ответа, жесткий стейк в мире 10 000 ложек.

Я смотрел на символы. Большая загогулина не значила для меня ничего, пока еще нет. «Мы начнем матан через девять месяцев, – заметил ранее мой друг Роз, – и ты знаешь, что это означает: кто-то залетел от моего графического калькулятора». Шутку Роза я понял, но шутка выпускников ускользнула от моего ума.

Перенесемся на восемь лет вперед.

Моя первая работа в качестве преподавателя заставила меня задуматься о торговле подержанными автомобилями на окраине китайского квартала Окленда. Однажды на третий год преподавания я показал своим ученикам продвинутого курса математического анализа неберущийся интеграл: ∫ e>−x2 dx. В витиеватых и напыщенных выражениях я разъяснил его нерешаемость.

– Спойлер! – выкрикнула Адриана.

Несколько студентов покачали головами.

Но Бетсайда задала мне провокационный вопрос:

– Так у него нет области под кривой?

Ага, хорошая задачка! Думаю, никто не удивился, что я был небрежен и понятия не имел, как ответить на этот вопрос. Выяснилось, что у функции e>−x2 есть чрезвычайно красивый график.



Если вы возьмете конкретную ограниченную область – скажем, от 0 до 1, или от 0,9 до 1,3, или от –1,5 до 0,5, то в самом деле найдете ответ.




Тогда почему интеграл «неберущийся»? Потому что нет хорошей формулы для определения этой площади. Наша волшебная палочка – фундаментальная теорема математического анализа, которая вычисляет интегралы, беря антипроизводные, – здесь оказывается просто бесполезным прутиком. Машите ею хоть сотню лет: никакого магического ответа так и не появится.

– Мой графический калькулятор может это сделать, – сказал Ю Ханг. – То есть, если судить по вашим словам, он умнее всех математиков в мире.