Время переменных. Математический анализ в безумном мире (Орлин) - страница 30

Если она не помогает нам предсказать, когда массовое увлечение начнет выравниваться, то какая же тогда польза от логистической модели? Может быть, это просто сказка, всего лишь история в графической форме?

Может быть. Но не преуменьшайте ее ценность. Мы с вами – персонажи этой истории. Структура рассказа определяет наши действия, наши мысли, наши «заказы навынос». Мы с вами – существа, рассказывающие истории. Эти истории определяют наши действия и мысли. И даже если история роста по логистической кривой не помогает делать предсказания, она может, по крайней мере, намекнуть, что ждет нас в будущем, обогатить наше мышление и указать, на что стоит обратить внимание.

То, на что указывают нам математические модели, слишком сложно для восприятия. Небольшое упрощение – здоровая человеческая реакция, по крайней мере до тех пор, пока мы читаем написанное мелким шрифтом прежде, чем поиграть в игрушку.


VIII

То, что ветер оставляет после себя

Яркий ноябрьский день в Массачусетсе. Ветер сдувает листья с деревьев, словно зима спешит сорвать осенние украшения. Я держу в руке чашку чая и рассказываю про эту книгу, на тот момент представляющую собой неряшливо намеченные контуры и несколько наполовину готовых абзацев, своей подруге, преподавательнице английского языка Брайанне. Я объясняю, что это экскурсия в мир математического анализа, но без вычурных уравнений. Никаких замысловатых вычислений. Только идеи и понятия, иллюстрированные историями, охватывающими весь опыт человечества – от науки до поэзии, от философии до фантазии, от высокого искусства до повседневной жизни. Легко краснобайствовать, когда книга еще не написана.

Брайанна слушает хорошо. Она сама относит себя к «нематематическим людям», но, по моему мнению, любопытна, вдумчива, проницательна. Именно такая, как читатель, до которого я надеюсь достучаться. Пока мы болтаем, ей что-то приходит в голову – загадка, которую когда-то загадал ее коллега, учитель математики. Она хватает листок бумаги и рисует прямоугольник.



– Какова длина отмеченной точками части? – спрашивает она.

– Семь сантиметров, – отвечаю я. – Три плюс четыре.

– Хорошо, – говорит она, – а что насчет этого?



– По-прежнему семь, – говорю я. – Два горизонтальных участка в сумме дают четыре; два вертикальных – три. Если разбить линию на несколько частей, это не изменит общую длину.

– Правильно, – соглашается она. – А чему состоящая из точек часть равна сейчас?



– Все еще семь. По той же логике.

Она чертит снова:

– А сейчас?



– Семь…

– Хорошо, а если мы будем делать бесконечно малые