Такими были условия самой известной античной задачи на максимизацию. Какой участок земли вы можете отгородить с помощью некоторого количества длинных полосок кожи?
Эта загадка сегодня известна как изопериметрическая задача: приставка изо- здесь означает «тот же самый», а периметр – «подлая леди». По этимологическому совпадению периметр также означает «длина границы плоской фигуры».
Вопрос состоит в том, как можно захватить наибольшую площадь из всех возможных форм.
Не знаю, какими единицами длины пользовалась Элисса. Вероятнее всего, не метрами, если только она не была одной из первых, кто их применял. Поэтому, скажем, ее полоски соответствовали 60 «бычьим футам» (каждый из которых равен «1/60 общей длины, имевшейся у Элиссы»).
Теперь упорядоченная система геометрии предоставляет бесконечное разнообразие форм для города Элиссы.
Чтобы избежать такого разброса (и сложных расчетов площади), давайте возьмем самый простой класс фигур – прямоугольники.
Имея шкуру быка определенного размера, Элиссе предстояло пойти на сделку. Чем больше она будет расширять основание прямоугольника, тем меньше будет высота, и наоборот. Увеличьте одно из измерений с 17 до 18, и другое тут же понизится с 13 до 12.
Мы можем иначе сформулировать формулу площади прямоугольника: не «ширина × высота», а «основание × (30 – основание)».
На графике сверху каждая точка обозначает возможный прямоугольник, зарождающуюся империю Элиссы. На левом краю находятся глупые планы, такие как 1 × 29, на правом – их зеркальные отражения, скажем 29 × 1. Благодаря каждому из них получается очень узкая территория площадью 29 квадратных единиц, зауженная до такой степени, что даже Бостон покажется просторным.
Почему получаются такие нежизнеспособные результаты? Просто рассмотрите производные. Отношение
скажет нам о том, как площадь реагирует на изменение основания.
Тем временем
скажет нам, как площадь реагирует на изменение высоты.
Увеличьте основание, и площадь чуть-чуть изменится. Увеличьте высоту, и она взлетит ввысь. Если пользоваться другими терминами,
ничтожно мало, в то время как
огромно. Это порок всех подобных прямоугольников, напоминающих по форме спагетти, с удлиненным основанием и хилой высотой. По такому замыслу почти вся драгоценная бычья шкура уйдет на прижимистую производную, не оставив ничего щедрой.
Более умный план? Тратить, пока производные не станут равны. Это произойдет, как показывает график, когда стороны станут равны, в квадрате 15 × 15.
Решили ли мы проблему Элиссы? Не пора ли перерезать красную ленточку и начать занимать места на парковке? Не так быстро – у принцессы в запасе есть еще один трюк. Вместо того чтобы раскладывать полоски из бычьей кожи по открытой равнине, что, если ей отгородить участок на побережье Средиземного моря? Таким образом, вместо того чтобы выкладывать четыре стороны, ей понадобятся только три.