Время переменных. Математический анализ в безумном мире (Орлин) - страница 59

– Так какой же будет высота и ширина? – спрашиваю я.

– Ну, ширина – это, должно быть, половина длины окружности огурца. А высота, наверное, радиус огурца.



– Так задача решена?

– Не-а, – отвечает он. – На самом деле это не прямоугольник. Он неровный. Искаженный.

– Специальный термин, – объясняю я, – это «колеблющийся». Так что же нам делать?

Размышляя в этом направлении, мы берем еще один кусок огурца и рассекаем его на 24 еще более тонких ломтика. После их тщательного раскладывания получается фигура подобной формы, только слегка менее колеблющаяся, чуть менее шатающаяся. Другие гости смотрят на нас с благоговейным страхом и восхищением или, возможно, с жалостью и отвращением – я никогда не мог определить разницу.



– Теперь он более прямоугольный! – говорит мой собеседник. – Но еще не совсем.

Так что мы берем еще один ломтик огурца и нарезаем его еще тоньше.



– Теперь это прямоугольник? – спрашиваю я.

Вздох:

– Нет. Он все еще колеблется по высоте и шатается по ширине. Все эти загибы здесь, пусть даже они стали микроскопическими.

– Специальный термин, – объясняю я, – это «малипусенький».

– Надо нарезать огурец на неисчислимые ломтики, каждый из которых бесконечно мал, – говорят мне. – Это единственный способ создать прямоугольник. Но… это невозможно.

Мой оппонент колеблется:

– Не так ли?

Возможно это или нет, но математик по имени Евдокс сделал это еще 24 века назад, на территории, где в наши дни находится Турция. Мы называем такой подход «методом исчерпывания» не потому, что он что-то исчерпывает, а потому, что определенное расхождение постепенно исчезает, или «исчерпывается». Это расхождение между приближением (колеблющимся прямоугольником) и тем, к чему он стремится (идеальным, свободным от колебаний прямоугольником). Проследуем по этому логическому пути до конца, и мы увидим, что площадь круга – это то же самое, что площадь прямоугольника: произведение радиуса и половины длины окружности.

Или, если вы предпочитаете уравнения:

На столовой салфетке мы набросали интеграл в зачаточном виде. Рассечь проблемный объект на неисчислимые части, каждая из которых бесконечно мала; переместить их, сложить более простую совокупность и из этого перемещения сделать выводы о первоначальном объекте – эти шаги формируют шаблон, наметки интегрального исчисления.

Возможно, к этому моменту у моего собеседника кончилось вино. Вполне справедливо. Мы обмениваемся кивками и визитными карточками, чтобы больше никогда не встречаться. Предполагаю, именно для этого визитные карточки и служат – всеобщий знак, заменяющий слова «прощайте навсегда!».