Время переменных. Математический анализ в безумном мире (Орлин) - страница 83

Гликемическая реакция – это не просто пик кривой или значение длительности; это целая история, совокупность бесчисленного количества крошечных моментов. Что врачам нужно знать, так это площадь области под кривой.

Увы, они не могут просто применить фундаментальную теорему математического анализа. Она для кривых, которые определяются аккуратными формулами, а не для тех, которые появились в результате игры «соедини точки» и основаны на эмпирических данных. Для таких неаккуратных реальностей нужны методы аппроксимации.



Именно этому посвящена статья Тай. «В модели автора, – объясняется в ней, – общая площадь под кривой вычисляется с помощью разделения этой области на маленькие сегменты (прямоугольники и треугольники), площадь которых можно точно вычислить с помощью соответствующих геометрических формул».



Тай пишет, что «при использовании других формул часто происходит существенная недооценка или переоценка общей площади области под метаболической кривой». Ее метод, напротив, вычисляет площадь с точностью до 0,4 %. Это умный геометрический трюк, если только не считать одного крошечного недочета.

Это Матан 101[50].

Многие века математики знали, что, когда дело доходит до практической аппроксимации, есть методы намного лучше, чем Римановы контуры зданий-прямоугольников. В частности, вы можете определить ряд точек на вашей кривой, а затем соединить их прямыми. Таким образом получится вереница длинных, тонких трапеций.



Забудьте 1994 г. Этот метод не был нов ни в 1694 г., ни в 94 г. до нашей эры. Древние вавилоняне использовали его, чтобы вычислить расстояние, которое проходит по небу планета Юпитер. Тай написала, рецензент одобрил, а Diabetes Care опубликовал работу тысячелетней давности, то, что трудолюбивый студент первого курса может сделать, выполняя домашнее задание. И все это подано так, будто является новым.

Математикам выпал день, богатый на возможности повеселиться.

Результат № 1. Несогласие и неодобрение. «Тай предложила простую, хорошо известную формулу, подчеркнув, что это ее собственная математическая модель – так было написано в одном из критических писем, полученных Diabetes Care, – и при этом допустила ошибку».

Результат № 2. Насмешки. «Потрясающее игнорирование математики!» – отметил один комментатор в интернете. «Это смешно!» – написали несколько других.

Результат № 3. Примирение. «Главный урок, который мы должны извлечь из этого, состоит в том, что рассчитать площадь областей под кривой достаточно трудно», – написал исследователь диабета, чью более раннюю работу раскритиковала Тай (как выяснилось, эта критика была основана на неправильном понимании). Письмо заканчивалось в примирительном тоне: «Боюсь, я тоже должен разделить ответственность за свой вклад в эту путаницу».