(
h|
e&
k) обозначает вероятность того, что Джонс совершил это убийство, – вероятность, заданную всей совокупностью данных, которые есть у детектива.
Для всех пропозиций p и q P(p|q) = 1, если и только если q делает p достоверным, например, если из q следует p (то есть существует дедуктивно достоверное доказательство от q к p), и P(p|q) = 0, если и только если q делает достоверным ¬p, например, если из q следует ¬p15. P(p|q) + P(¬p|q) = 1. Таким образом, если P(p|q) > 1/2, то P(p|q) > P(¬p|q), и в случае q более вероятно, что p, чем ¬p. Следовательно, для фонового знания k доказательство от e к h будет правильным З-индуктивным доказательством, если и только если P (h|e&k) > P(h|k), или правильным П-индуктивным доказательством, если и только если P(h|e&k) > 1/2. Граница между новыми данными и фоновыми данными может быть проведена где угодно: часто бывает удобно включить все данные, проистекающие из опыта, в e и рассматривать k в качестве того, что в теории подтверждения называется «простыми тавтологическими данными», то есть, фактически, это все наши другие иррелевантные знания.
Мои дальнейшие рассуждения будут следующими. Пусть h обозначает нашу гипотезу «Бог существует». Пусть e>1, e>2, e>3 и т. д. обозначают различные суждения, которые люди высказывают как свидетельства в пользу или против существования Бога и конъюнкция которых составит e. Пусть e>1 будет обозначать суждение «существует физическая вселенная». Тогда мы имеем доказательство от e>1 к h – космологическое доказательство. Рассматривая это доказательство, я сделаю допущение, что у нас нет никаких иных релевантных данных, и таким образом, k будет простыми тавтологическими данными. Тогда P(h|e>1&k) означает вероятность существования Бога, заданную существованием физической вселенной, а также простыми тавтологическими данными, которыми впоследствии можно будет пренебречь. Если P(h|e>1&k) > 1/2, то доказательство от e>1 к h является достаточным П-индуктивным доказательством. Если P(h|e>1&k) > P(h|k), то это доказательство является достаточным З-индуктивным доказательством. Однако при рассмотрении второго доказательства, от e>2 (которое предполагает наличие во вселенной темпоральной упорядоченности) я буду использовать k для обозначения посылки первого доказательства e>1, и тогда P(h|e>2&k) будет означать вероятность существования Бога, заданную существованием физической вселенной, а также ее темпоральной упорядоченностью. А при рассмотрении третьего доказательства, от e>3, k будет обозначать посылку второго доказательства (