Секреты числа Пи. Почему неразрешима задача о квадратуре круга (Наварро) - страница 17

В 1841 году Уильям Резерфорд (1798–1871) использовал формулу Мэчина

π/4 = 4∙arctg (1/5) — arctg (1/79) + arctg (1/99).

и получил 208 знаков π, из которых 152 были верными. В 1853 году он вернулся к этой задаче и с помощью формулы Мэчина установил новый рекорд — 440 знаков.


ЧТО ТАКОЕ ТРАНСЦЕНДЕНТНОЕ ЧИСЛО?

Число называется алгебраическим, если оно является корнем многочлена

a>nx>n + a>n-1x>n-1 +… + a>1x + a>0

все коэффициенты которого а>n, а>n-1…., a>1, а>0 являются рациональными числами. В высшей математике доказывается, что любое число, которое можно получить, используя лишь циркуль и линейку конечное число раз, обязательно является алгебраическим. Неалгебраическое число называется трансцендентным. Таким образом» очевидно, что трансцендентное число нельзя получить построением с помощью циркуля и линейки.

* * *

Иоганн Мартин Захариус Дазе (1824–1861) занимает особое место в истории математики. Его друг Шульц фон Штрасницкий (1803–1852) показал ему следующую формулу Мэчина:

π/4 = arctg (1/2) + arctg (1/5) + arctg (1/8).

и в 1844 году Дазе вычислил с ее помощью 200 знаков π. Невероятно, но на это ему потребовалось лишь два месяца, и все расчеты он производил в уме. Он был настоящим человеком-компьютером и обладал невероятной способностью к вычислениям. Сам Гаусс, известнейший математик своего времени, советовал властям использовать Дазе для расчетов. Была учреждена премия, вручаемая тому, кто получит список делителей чисел N таких, что 7 000 000 < N < 10 000 000. Дазе начал работать над этой задачей, но смерть помешала ему найти решение. Дазе страдал синдромом саванта: он был поразительно одарен в математике, имел невероятную память, но в остальном был весьма и весьма средних способностей. Например, он мог перемножить два восьмизначных числа меньше чем за минуту. Для перемножения 100-значных чисел ему требовалось около девяти часов. Он обладал почти фотографической памятью, что позволяло ему с удивительной точностью пересчитывать любые предметы, будь то овцы, буквы или костяшки домино. Писатель и ученый Артур Кларк в письме к палеонтологу Стивену Джею Гулду задавался вопросом, какую пользу для эволюции биологического вида может иметь способность вычислить в уме 200 знаков числа π. Ответ на этот вопрос нам неизвестен.

В 1847 году датский астроном и математик-самоучка Томас Клаусен (1801–1885), используя две формулы Мэчина:

(1/4)∙π = 2∙arctg (1/3) + arctg (1/7),

(1/4)∙π = 4∙arctg (1/5) — arctg (1/239).

точно вычислил 248 знаков Я. Он также ошибся в вычислениях, но допустил ошибку в самом конце расчетов, всего вычислив 250 знаков.