Секреты числа Пи. Почему неразрешима задача о квадратуре круга (Наварро) - страница 19

>1 + А>2е>в2 + … + А>nе>вn

не может быть равной нулю (за исключением случая, когда все коэффициенты нулевые). Так как знаменитая формула Эйлера может быть записана в следующем виде:

e>πi + 1 = e>πi + e>0 = 0,

она удовлетворяет условиям Линдемана (А>1 = A>2 = 1, B>1 = πi, В>2 = 0), поэтому πi не может являться алгебраическим числом, равно как и само π. Число π не является алгебраическим, следовательно, оно трансцендентно. Так как оно трансцендентно, его нельзя получить построением с помощью циркуля и линейки. Конечно, за этим последовали новые, менее сложные доказательства, но и приведенных выкладок было достаточно, чтобы снять завесу тайны с числа π. До Линдемана было известно, что трансцендентность числа π означает, что задача о квадратуре круга нерешаема. Доказательство Линдемана положило конец поискам решения этой легендарной задачи. Было окончательно установлено: задача о квадратуре круга не имеет решения.

Глава 2

Бесконечная незначительность и трансцендентность числа π

Лицо π было скрыто маской. Все понимали, что сорвать ее, оставшись при этом в живых, не сможет никто. Сквозь прорези маски пронзительно, безжалостно, холодно и загадочно смотрели глаза.

Бертран Рассел


Мы подробно, знак за знаком, проследили путь числа π в поисках трансцендентности. Линдеман завершил поиски и расставил все по местам. Теперь мы знаем, что π трансцендентно, его нельзя построить с помощью циркуля и линейки, поэтому задача о квадратуре круга не имеет решения.

Чтобы лучше понять значимость и важность π в мире математики, совершим небольшую экскурсию в неспокойный мир бесконечности. Это отдельная вселенная, очень обширная и запутанная, полная вопросов, лежащих между философией и реальным миром. Этот мир настолько необычен, что некоторыми его аспектами занимается высшая математика, в которой действия с бесконечностью предельно упрощаются. Мы рассмотрим эту область лишь поверхностно, особенно не углубляясь. Тем не менее обзор бесконечности в математике нетривиален, требует определенных усилий, а иногда просто скучен и повергает в уныние.

Предупредив читателя, мы начинаем нашу экскурсию в мир бесконечности с почти что абсурдного вопроса: «Что такое число?» Чтобы ответить на него, начнем с рассмотрения самого представления о числах.


Числа и множества

В основе практически всех основных понятий лежат множества — простые совокупности объектов, которые мы будем перечислять в фигурных скобках, разделяя запятыми. Например,

А = {а, Ь, с, d}

обозначает множество А, образованное символами а, Ь, с и d. Вместо букв могут использоваться животные, люди, музыкальные инструменты и так далее. Это не принципиально. Будем использовать наиболее простое определение, которое эксперты называют «наивным»: будем считать множество совокупностью объектов, называемых «элементами множества».