Секреты числа Пи. Почему неразрешима задача о квадратуре круга (Наварро) - страница 21

|. Также число элементов множества называется его кардинальным числом. Таким образом,

число элементов А = кардинальное число А = |А|.

В целом различают конечные и бесконечные множества, и понятие «число элементов» используется для конечных множеств. Так, конечное множество может иметь 6241 или 123456789012 элементов.

Конечные множества имеют одну особенность: их кардинальное число больше, чем кардинальное число любой из частей множества. Например, если А содержит 7 элементов, любая часть А имеет меньше 7 элементов. Если

А = {гномы из сказки про Белоснежку},

то |A| = 7. Любое подмножество или подгруппа гномов В будет удовлетворять условию |B| < |A| и будет содержать меньше 7 гномов. Эта особенность, которая может показаться тривиальной, на самом деле отличает конечные и бесконечные множества: часть бесконечного множества и само множество целиком могут иметь одинаковые кардинальные числа. Как бы удивительно это ни было, существуют объекты, часть которых содержит столько же элементов, что и целое.


ГОСТИНИЦА С БЕСКОНЕЧНЫМ ЧИСЛОМ НОМЕРОВ

В качестве примера многие математики приводят парадокс гостиницы с бесконечным числом номеров, придуманный немецким математиком Давидом Гильбертом. Он формулируется так. Есть гостиница, владельца которой не пугает толпа народа. Все номера гостиницы пронумерованы от 1 и далее в порядке возрастания. В сезон отпусков гостиница оказалась полностью заполнена, к радости ее владельца. Однако внезапно китайский туроператор прислал срочное сообщение: на следующий день должно приехать множество китайских путешественников. Для всех них нужно найти номера, но никого из уже заселившихся постояльцев выселять нельзя. Владелец отеля прекрасно знает математику и без труда нашел решение. Он попросил всех постояльцев переехать в комнату, номер которой в два раза больше, чем номер прежней комнаты, как показано на рисунке.



В гостинице снова появилось бесконечное число комнат, и всем новоприбывшим путешественникам хватило мест. Счастливый владелец гостиницы с бесконечным числом номеров продолжает работу благодаря своим знаниям о бесконечности.

* * *

Рассмотрим простейший пример бесконечности, образуемой всеми целыми положительными числами, так называемыми натуральными:

 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …}.

Множество натуральных чисел обозначается латинской буквой .

Мы с удивлением обнаружим, что часть N, множество четных чисел, соответствует самому :



Поэтому

|{четные числа}| = |

|.

Часть чего-либо бесконечного также может быть бесконечной и иметь то же кардинальное число.