Натуральные, рациональные и алгебраические числа
Люди много веков жили, повернувшись спиной к бесконечности. С подобным безразличием покончил немецкий математик высшего класса и непревзойденного ума, хоть и несколько эксцентричный. Его звали Георг Кантор.
Кардинальными числами конечных множеств являются натуральные числа. Кардинальные числа бесконечных множеств намного больше. Специалисты называют их трансфинитными, что дословно означает «находящиеся за пределами конечного». Наименьшее из трансфинитных чисел — это ||, которое Кантор обозначил как . Оно соответствует кардинальному числу множества натуральных чисел, иначе говоря,
|{1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,}| = || = .
Происхождение этого необычного знака таково:
(читается «алеф») — первая буква еврейского алфавита. Ноль, указанный как индекс, означает, что речь идет о наименьшем из всех алеф (алеф-нуле). Существует много кардинальных чисел, каждое имеет свой индекс:
Число отражает множества, которые соответствуют . Например, это могут быть четные числа, нечетные числа, числа, кратные 3, кратные 5, и многие другие. Множества, соответствующие , называются счетными, поскольку их элементы можно пронумеровать или подсчитать, как показано ниже:
* * *
ГЕОРГ КАНТОР (1845–1918)
Этот немецкий математик русского происхождения считается одним из величайших умов человечества. Он известен как создатель современной теории множеств и трансфинитных чисел. Его передовые идеи навлекли на себя нападки многих могущественных недоброжелателей, что заметно препятствовало академической карьере Кантора. Депрессии, которым был подвержен Кантор (он умер в психиатрической больнице), вероятно, были вызваны невозможностью проверить некоторые из его гипотез. Сегодня нам известно, что ответов на некоторые вопросы, которыми задавался Кентор, не существует, но определенные методы, которые он использовал в доказательствах, могут по праву называться гениальными.
* * *
Но здесь нас подстерегает множество сюрпризов: бесконечное множество
= {…, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ….}
математики называют множеством целых чисел, и является частью . Очевидно, что всякое натуральное число является целым. Но что можно сказать о кардинальных числах этих множеств? Чему равно кардинальное число ? Если мы посмотрим на рисунок ниже, демонстрирующий процесс пересчета целых чисел,
то увидим, что || = || = , поэтому множество также является счетным.
Сделаем еще один шаг вперед: рассмотрим множество дробей, или так называемых дробных чисел. Дробь определяется числителем и знаменателем и записывается в виде