Секреты числа Пи. Почему неразрешима задача о квадратуре круга (Наварро) - страница 35


Нормальная кривая

Во многих задачах, связанных с теорией вероятностей и статистикой, например, в распределении роста, коэффициента интеллекта, инструментальных ошибок телескопа, интенсивности лазерного луча (и это лишь некоторые примеры), фигурирует так называемая кривая Гаусса, или нормальная кривая. Она соответствует распределению вероятностей с кривой плотности, в которой определяющую роль играет π.

Стандартное представление кривой можно получить, взяв среднее значение, равное нулю, и дисперсию δ>2 = 1. В этом случае кривая будет иметь знакомую нам форму колокола, который слегка вытянут вдоль вертикальной оси.



Эта кривая описывается уравнением



Вероятность рассчитывается с помощью интеграла



Как можно убедиться, в этой формуле всегда присутствует π.

Закону нормального распределения подчиняется, например, распределение возраста смерти. Можно сказать, перефразируя Джона Донна, что всякий раз, когда кто-то умирает, по числу π звонит колокол — колокола Гаусса.


ИОГАНН КАРЛ ФРИДРИХ ГАУСС (1777–1855)

Никакая характеристика не может точно выразить весь масштаб личности математика, астронома и физика Гаусса. Достаточно сказать, что современники называли его «принцем математиков» (лат. Princeps mathematicorum). Гаусс был родом из очень простой семьи. Уже в раннем детстве он продемонстрировал незаурядные способности. По легенде, он показал свой удивительный талант, когда учитель предложил найти сумму всех чисел от 1 до 100. Всего через несколько минут Гаусс нашел верный ответ: 5 050. Как мог ребенок так быстро дать верный ответ, когда любому другому на это потребовалось бы намного больше времени? Он заметил, что числа от 1 до 100 образуют 50 пар чисел, сумма каждой из которых равна 101:

1 + 100 = 2 + 99 = 3 + 98 = … = 48 + 53 = 49 + 52 = 50 + 51.

Следовательно, 50∙101 = 5 050.

Гаусс очень рано добился заметных результатов. Его интересовало буквально все, он создал бесчисленное множество трудов в самых различных областях: нашел критерий возможности построения правильных многоугольников, сформулировал теорему о распределении простых чисел, доказал основную теорему алгебры, рассчитал орбиту карликовой планеты Цереры, предсказал важнейшие моменты неевклидовой геометрии, не считая многочисленных достижений в математическом анализе, алгебре, теории чисел, теории вероятностей и других разделах математики. В прикладной математике и физике выделяются его работы по геодезии, электричеству и магнетизму. Он изобрел гелиотроп, гелиограф и электрический телеграф.



Гелиотроп — один из приборов, изобретенных