О времени, пространстве и других вещах. От египетских календарей до квантовой физики (Азимов) - страница 127

Если приведенные выше рассуждения верны, то увеличение площади поверхности катализатора при его неизменном весе одновременно повысит его эффективность. Поэтому платиновый порошок, имеющий обширный поверхностный слой, является намного более эффективным катализатором, чем кусок платины того же веса. Значит, мы можем говорить о поверхностном катализаторе.

Но было сказано о поверхностной пленке, которая ускоряет процесс взаимодействия водорода и кислорода. Хотелось бы ликвидировать любые намеки на волшебство.

Для этого следует понять, чего катализатор сделать не может.

В 1870 году американский физик Джозайя Уиллард Гиббс разработал законы термодинамики применительно к химическим реакциям. Он показал, что существует некое количество так называемой «свободной энергии», которое всегда уменьшается в спонтанной химической реакции, то есть в реакции, которая протекает без поступления энергии.

Так, после начала реакции соединения водорода и кислорода она продолжается до тех пор, пока имеются газы — реагенты, а в результате образуется вода. Мы объясняем это тем, что свободная энергия воды меньше, чем свободная энергия газовой смеси. И реакцию взаимодействия водорода и кислорода с образованием воды можно сравнить со скольжением вниз по «энергетическому склону».

Но если все сказанное верно, почему водород и кислород не реагируют между собой, находясь в состоянии газовой смеси? Почему они так долго медлят на верхней ступеньке энергетической лестницы и вступают в реакцию только после нагрева?

Очевидно, что до начала реакции молекул кислорода и водорода, каждая из которых состоит из двух атомов, одна из них должна быть разрушена на отдельные атомы. А для этого необходима дополнительная энергия. Это и есть верхушка энергетического склона, по которому еще предстоит спуститься. Своего рода «энергетический пригорок». Количество энергии, необходимое для начала химической реакции, называется энергией активации. Эту концепцию впервые выдвинул в 1889 году шведский химик Сванте Август Аррениус.

Когда молекулы кислорода и водорода сталкиваются при обычной температуре, только незначительное их число обладает достаточной энергией, чтобы при столкновении разбиться. Они вступают в реакцию, в результате чего выделяется энергия для расщепления дополнительных молекул. Но дело в том, что одновременно выделяется такое маленькое количество энергии, что она рассеивается раньше, чем используется. В результате водород и кислород при комнатной температуре не реагируют между собой.

Когда температура поднимается, молекулы начинают двигаться быстрее, значительно большее их количество обладает необходимой энергией, чтобы разбиться или разбить другую молекулу при столкновении. (Другими словами, большее число молекул могут перебраться через «энергетический пригорок».) Постепенно высвобождается все больше энергии, и в какой-то момент температура достигает такого уровня, когда высвобождается больше энергии, чем может быть рассеяно. А температура продолжает повышаться, в результате производится больше энергии, что еще больше повышает температуру, и реакция соединения водорода и кислорода сопровождается взрывом.